Home • Hashes • Research • About • Swag Shop
VirusShare is proud to have played a part in assisting the tireless efforts of the global research community and is thankful to the researchers who have contributed to the project. Below is an incomplete but growing list of publications that have cited VirusShare as a data source for their research. |
• 2020 • |
Abbasi, Muhammad Shabbir; Al-Sahaf, Harith; Welch, Ian; (2020). Particle Swarm Optimization: A Wrapper-Based Feature Selection Method for Ransomware Detection and Classification. International Conference on the Applications of Evolutionary Computation (Part of EvoStar), 181-196. Springer. |
Ahmed, Yahye Abukar; Koçer, Barış; Al-rimy, Bander Ali Saleh; (2020). Automated Analysis Approach for the Detection of High Survivable Ransomware. KSII Transactions on Internet and Information Systems (TIIS), 14(5), 2236-2257. 한국인터넷정보학회. |
Ahmed, Yahye Abukar; Koçer, Barış; Huda, Shamsul; Al-rimy, Bander Ali Saleh; Hassan, Mohammad Mehedi; (2020). A system call refinement-based enhanced Minimum Redundancy Maximum Relevance method for ransomware early detection. Journal of Network and Computer Applications, 102753. Elsevier. |
Alaeiyan, Mohammadhadi; Dehghantanha, Ali; Dargahi, Tooska; Conti, Mauro; Parsa, Saeed; (2020). A multilabel fuzzy relevance clustering system for malware attack attribution in the edge layer of cyber-physical networks. ACM Transactions on Cyber-Physical Systems, 4(3), 1-22. ACM New York, NY, USA. |
Alam, Manaar; Mukhopadhyay, Debdeep; Kadiyala, Sai Praveen; Lam, Siew-Kei; Srikanthan, Thambipillai; (2020). Improving accuracy of HPC-based malware classification for embedded platforms using gradient descent optimization. Journal of Cryptographic Engineering, 1-15. Springer. |
Alazab, Moutaz; (2020). Automated Malware Detection in Mobile App Stores Based on Robust Feature Generation. Electronics, 9(3), 435. Multidisciplinary Digital Publishing Institute. |
Alazab, Moutaz; Alazab, Mamoun; Shalaginov, Andrii; Mesleh, Abdelwadood; Awajan, Albara; (2020). Intelligent mobile malware detection using permission requests and api calls. Future Generation Computer Systems, 107, 509-521. Elsevier. |
Alhanahnah, Mohannad; Yan, Qiben; Bagheri, Hamid; Zhou, Hao; Tsutano, Yutaka; Srisa-An, Witawas; Luo, Xiapu; (2020). DINA: Detecting Hidden Android Inter-App Communication in Dynamic Loaded Code. IEEE Transactions on Information Forensics and Security, 15, 2782-2797. IEEE. |
Ali, Abdullah; Eshete, Birhanu; (2020). Best-Effort Adversarial Approximation of Black-Box Malware Classifiers. arXiv preprint arXiv:2006.15725 |
Allgood, Nicholas R; Nicholas, Charles K; (2020). A quantum algorithm to locate unknown hashes for known n-grams within a large malware corpus. arXiv preprint arXiv:2005.02911 |
Alrabaee, Saed; Debbabi, Mourad; Shirani, Paria; Wang, Lingyu; Youssef, Amr; Rahimian, Ashkan; Nouh, Lina; Mouheb, Djedjiga; Huang, He; Hanna, Aiman; (2020). Free Open-Source Software Fingerprinting. Binary Code Fingerprinting for Cybersecurity, 157-186. Springer. |
Alswaina, Fahad; Elleithy, Khaled; (2020). Android Malware Family Classification and Analysis: Current Status and Future Directions. Electronics, 9(6), 942. Multidisciplinary Digital Publishing Institute. |
Amin, Muhammad; Tanveer, Tamleek Ali; Tehseen, Mohammad; Khan, Murad; Khan, Fakhri Alam; Anwar, Sajid; (2020). Static malware detection and attribution in android byte-code through an end-to-end deep system. Future Generation Computer Systems, 102, 112-126. Elsevier. |
Babu, Pasupuleti Nagendra; Ramakrishna, S; (2020). Critical Review on Privacy and Security Issues in Data Mining. Emerging Research in Data Engineering Systems and Computer Communications, 217-230. Springer. |
Bajpai, Pranshu; Enbody, Richard; (2020). An empirical study of key generation in cryptographic ransomware. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), 1-8. IEEE. |
Basole, Samanvitha; Di Troia, Fabio; Stamp, Mark; (2020). Multifamily malware models. Journal of Computer Virology and Hacking Techniques, 1-14. Springer. |
BehradFar, Mohammad Mehdi; HaddadPajouh, Hamed; Dehghantanha, Ali; Azmoodeh, Amin; Karimipour, Hadis; Parizi, Reza M; Srivastava, Gautam; (2020). RAT Hunter: Building Robust Models for Detecting Remote Access Trojans Based on Optimum Hybrid Features. Handbook of Big Data Privacy, 371-383. Springer. |
Benthin, Marius; (2020). Conception and Implementation of an Open-Source Threat Intelligence System. |
Botacin, Marcus; Ceschin, Fabricio; de Geus, Paulo; Grégio, André; (2020). We Need to Talk About AntiViruses: Challenges & Pitfalls of AV Evaluations. Computers & Security, 101859. Elsevier. |
Cai, Haipeng; (2020). Embracing Mobile App Evolution via Continuous Ecosystem Mining and Characterization. |
Cai, Haipeng; (2020). Assessing and improving malware detection sustainability through app evolution studies. ACM Transactions on Software Engineering and Methodology (TOSEM), 29(2), 1-28. ACM New York, NY, USA. |
Cai, Haipeng; Fu, Xiaoqin; Hamou-Lhadj, Abdelwahab; (2020). A study of run-time behavioral evolution of benign versus malicious apps in android. Information and Software Technology, 122, 106291. Elsevier. |
Chatterjee, Moitrayee; Datta, Prerit; Abri, Faranak; Namin, Akbar Siami; Jones, Keith S; (2020). Launching Stealth Attacks using Cloud. arXiv preprint arXiv:2006.07908 |
Christian, Brian P; (2020). Data Surveillance for Privileged Assets based on Threat Streams. . Google Patents. |
Chu, Qianfeng; Liu, Gongshen; Zhu, Xinyu; (2020). Visualization Feature and CNN Based Homology Classification of Malicious Code. Chinese Journal of Electronics, 29(1), 154-160. IET. |
Darshan, SL Shiva; Jaidhar, CD; (2020). An empirical study to estimate the stability of random forest classifier on the hybrid features recommended by filter based feature selection technique. International Journal of Machine Learning and Cybernetics, 11(2), 339-358. Springer. |
Devi, R Aiyshwariya; Arunachalam, AR; Rajakumar, PS; (2020). Development of Advanced IoT Devices using ECC-LSTM for an Enhanced Device Security. Development, 29(9s), 5074-5087 |
D’Angelo, Gianni; Ficco, Massimo; Palmieri, Francesco; (2020). Malware detection in mobile environments based on Autoencoders and API-images. Journal of Parallel and Distributed Computing, 137, 26-33. Elsevier. |
Egitmen, Alper; Bulut, Irfan; Aygun, R; Gunduz, A Bilge; Seyrekbasan, Omer; Yavuz, A Gokhan; (2020). Combat Mobile Evasive Malware via Skip-Gram-Based Malware Detection. Security and Communication Networks, 2020. Hindawi. |
Fang, Yong; Zeng, Yuetian; Li, Beibei; Liu, Liang; Zhang, Lei; (2020). DeepDetectNet vs RLAttackNet: An adversarial method to improve deep learning-based static malware detection model. Plos one, 15(4), e0231626. Public Library of Science San Francisco, CA USA. |
Feng, Ruitao; Chen, Sen; Xie, Xiaofei; Meng, Guozhu; Lin, Shang-Wei; Liu, Yang; (2020). A Performance-Sensitive Malware Detection System Using Deep Learning on Mobile Devices. arXiv preprint arXiv:2005.04970 |
Fu, Hao; Hu, Pengfei; Zheng, Zizhan; Das, Aveek; Pathak, Parth; Gu, Tianbo; Zhu, Sencun; Mohapatra, Prasant; (2020). Towards Automatic Detection of Nonfunctional Sensitive Transmissions in Mobile Applications. IEEE Transactions on Mobile Computing. IEEE. |
Gajrani, Jyoti; Agarwal, Umang; Laxmi, Vijay; Bezawada, Bruhadeshwar; Gaur, Manoj Singh; Tripathi, Meenakshi; Zemmari, Akka; (2020). EspyDroid+: Precise reflection analysis of android apps. Computers & Security, 90, 101688. Elsevier. |
Gibert Llauradó, Daniel; Mateu Piñol, Carles; Planes Cid, Jordi; (2020). The rise of machine learning for detection and classification of malware: Research developments, trends and challenge. Journal of Network and Computer Applications, 2020, vol. 153, 102526. Elsevier. |
Gibert, Daniel; Mateu, Carles; Planes, Jordi; (2020). HYDRA: A Multimodal Deep Learning Framework for Malware Classification. Computers & Security, 101873. Elsevier. |
Gibert, Daniel; Mateu, Carles; Planes, Jordi; (2020). The rise of machine learning for detection and classification of malware: Research developments, trends and challenges. Journal of Network and Computer Applications, 153, 102526. Elsevier. |
Gopalakrishnan, Prakash; Narayanan, R Sankara; Kamath, Rahul; Ramani, Anirud; (2020). Analyzing Diverse Data Mining Techniques to Detect the Malware based on Signature. |
Goyal, Parth S; Kakkar, Akshat; Vinod, Gopika; Joseph, Gigi; (2020). Crypto-Ransomware Detection Using Behavioural Analysis. Reliability, Safety and Hazard Assessment for Risk-Based Technologies, 239-251. Springer. |
Gupta, Deepak; Rani, Rinkle; (2020). Improving malware detection using big data and ensemble learning. Computers & Electrical Engineering, 86, 106729. Elsevier. |
Hatada, Mitsuhiro; Mori, Tatsuya; (2020). CLAP: Classification of Android PUAs by Similarity of DNS Queries. IEICE TRANSACTIONS on Information and Systems, 103(2), 265-275. The Institute of Electronics, Information and Communication Engineers. |
Hua, Yakang; Du, Yuanzheng; He, Dongzhi; (2020). Classifying Packed Malware Represented as Control Flow Graphs using Deep Graph Convolutional Neural Network. 2020 International Conference on Computer Engineering and Application (ICCEA), 254-258. IEEE. |
Hussain, Ahamed KH; Kakavand, Mohsen; Silval, Mira; Arulsamy, Lingges; (2020). A Novel Android Security Framework to Prevent Privilege Escalation Attacks.. International Journal of Computer Network & Information Security, 12(1) |
Hwang, Chanwoong; Hwang, Junho; Kwak, Jin; Lee, Taejin; (2020). Platform-Independent Malware Analysis Applicable to Windows and Linux Environments. Electronics, 9(5), 793. Multidisciplinary Digital Publishing Institute. |
Hwang, Jinsoo; Kim, Jeankyung; Lee, Seunghwan; Kim, Kichang; (2020). Two-Stage Ransomware Detection Using Dynamic Analysis and Machine Learning Techniques. Wireless Personal Communications, 112(4), 2597-2609. Springer. |
Imamverdiyev, Yadigar N; Abdullayeva, Fargana J; (2020). Deep Learning in Cybersecurity: Challenges and Approaches. International Journal of Cyber Warfare and Terrorism (IJCWT), 10(2), 82-105. IGI Global. |
Irshad, Areeba; Dutta, Malay Kishore; (2020). Identification of Windows-Based Malware by Dynamic Analysis Using Machine Learning Algorithm. Advances in Computational Intelligence and Communication Technology, 207-218. Springer. |
Jeon, Seungho; Moon, Jongsub; (2020). Malware-Detection Method with a Convolutional Recurrent Neural Network Using Opcode Sequences. Information Sciences. Elsevier. |
Joseph, D Paul; Norman, Jasmine; (2020). A Review and Analysis of Ransomware Using Memory Forensics and Its Tools. Smart Intelligent Computing and Applications, 505-514. Springer. |
Joseph, Paul; Norman, Jasmine; (2020). Systematic Memory Forensic Analysis of Ransomware using Digital Forensic Tools. International Journal of Natural Computing Research (IJNCR), 9(2), 61-81. IGI Global. |
KP, Soman; Alazab, Mamoun; (2020). A Comprehensive Tutorial and Survey of Applications of Deep Learning for Cyber Security. . TechRxiv. |
Kadiyala, Sai Praveen; Alam, Manaar; Shrivastava, Yash; Patranabis, Sikhar; Abbas, Muhamed Fauzi Bin; Biswas, Arnab Kumar; Mukhopadhyay, Debdeep; Srikanthan, Thambipillai; (2020). LAMBDA: Lightweight Assessment of Malware for emBeddeD Architectures. ACM Transactions on Embedded Computing Systems (TECS), 19(4), 1-31. ACM New York, NY, USA. |
Kato, Hiroya; Haruta, Shuichiro; Sasase, Iwao; (2020). Android malware detection scheme based on level of SSL server certificate. IEICE Transactions on Information and Systems, 103(2), 379-389. The Institute of Electronics, Information and Communication Engineers. |
Kim, Kichang; Kim, Jinsung; Ko, Eunbyeol; Yi, Jeong Hyun; (2020). Risk Assessment Scheme for Mobile Applications Based on Tree Boosting. IEEE Access, 8, 48503-48514. IEEE. |
Kok, SH; Abdullah, Azween; Jhanjhi, NZ; (2020). Early Detection of Crypto-Ransomware Using Pre-Encryption Detection Algorithm. Journal of King Saud University-Computer and Information Sciences. Elsevier. |
Kouliaridis, Vasileios; Kambourakis, Georgios; Geneiatakis, Dimitris; Potha, Nektaria; (2020). Two Anatomists Are Better than One—Dual-Level Android Malware Detection. Symmetry, 12(7), 1128. Multidisciplinary Digital Publishing Institute. |
Kucuk, Yunus; Yan, Guanhua; (2020). Deceiving Portable Executable Malware Classifiers into Targeted Misclassification with Practical Adversarial Examples. Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy, 341-352 |
Kumar, Amit; Gupta, Mugdha; Kumar, Gaurav; Handa, Anand; Kumar, Nitesh; Shukla, Sandeep Kumar; (2020). A Review: Malware Analysis Work at IIT Kanpur. Cyber Security in India, 39-48. Springer. |
Kuruvila, Abraham Peedikayil; Kundu, Shamik; Basu, Kanad; (2020). Defending Hardware-based Malware Detectors against Adversarial Attacks. arXiv preprint arXiv:2005.03644 |
Laurenza, Giuseppe; (2020). Critical Infrastructures Security: Improving Defense Against Novel Malware and Advanced Persistent Threats. . Sapienza–University of Rome. |
Li, Jingmei; Xue, Di; Wu, Weifei; Wang, Jiaxiang; (2020). Incremental Learning for Malware Classification in Small Datasets. Security and Communication Networks, 2020. Hindawi. |
Li, Zeng; Huang, Wenchao; Xiong, Yan; Ren, Siqi; Zhu, Tuanfei; (2020). Incremental learning imbalanced data streams with concept drift: The dynamic updated ensemble algorithm. Knowledge-Based Systems, 105694. Elsevier. |
Li, Zhiqiang; (2020). Advanced Techniques to Detect Complex Android Malware. |
Libri, Antonio; Bartolini, Andrea; Benini, Luca; (2020). pAElla: Edge-AI based Real-Time Malware Detection in Data Centers. IEEE Internet of Things Journal. IEEE. |
Liu, Xiaojian; Lei, Qian; Liu, Kehong; (2020). A Graph-Based Feature Generation Approach in Android Malware Detection with Machine Learning Techniques. Mathematical Problems in Engineering, 2020. Hindawi. |
Lysenko, Sergii; Bobrovnikova, Kira; Popov, Peter; Kharchenko, Viacheslav; Medzatyi, Dmytro; (2020). Spyware Detection Technique Based on Reinforcement Learning. |
Martins, Nuno; Cruz, José Magalhães; Cruz, Tiago; Abreu, Pedro Henriques; (2020). Adversarial Machine Learning applied to Intrusion and Malware Scenarios: a systematic review. IEEE Access, 8, 35403-35419. IEEE. |
Mateless, Roni; Rejabek, Daniel; Margalit, Oded; Moskovitch, Robert; (2020). Decompiled APK based malicious code classification. Future Generation Computer Systems. Elsevier. |
Mehtab, Anam; Shahid, Waleed Bin; Yaqoob, Tahreem; Amjad, Muhammad Faisal; Abbas, Haider; Afzal, Hammad; Saqib, Malik Najmus; (2020). AdDroid: rule-based machine learning framework for android malware analysis. Mobile Networks and Applications, 25(1), 180-192. Springer. |
Mosli, Rayan; (2020). Crafting Adversarial Examples using Particle Swarm Optimization. |
Nassiri, Mohammad; HaddadPajouh, Hamed; Dehghantanha, Ali; Karimipour, Hadis; Parizi, Reza M; Srivastava, Gautam; (2020). Malware Elimination Impact on Dynamic Analysis: An Experimental Machine Learning Approach. Handbook of Big Data Privacy, 359-370. Springer. |
Ngo, Quoc-Dung; Nguyen, Huy-Trung; Nguyen, Le-Cuong; Nguyen, Doan-Hieu; (2020). A survey of IoT malware and detection methods based on static features. ICT Express. Elsevier. |
Nguyen, Huy-Trung; Ngo, Quoc-Dung; Nguyen, Doan-Hieu; Le, Van-Hoang; (2020). PSI-rooted subgraph: A novel feature for IoT botnet detection using classifier algorithms. ICT Express. Elsevier. |
Nisha, OS Jannath; Bhanu, S Mary Saira; (2020). Detection of malware applications using social spider algorithm in mobile cloud computing environment. International Journal of Ad Hoc and Ubiquitous Computing, 34(3), 154-169. Inderscience Publishers (IEL). |
Niu, Weina; Cao, Rong; Zhang, Xiaosong; Ding, Kangyi; Zhang, Kaimeng; Li, Ting; (2020). OpCode-Level Function Call Graph Based Android Malware Classification Using Deep Learning. Sensors, 20(13), 3645. Multidisciplinary Digital Publishing Institute. |
Niveditha, VR; Ananthan, TV; Amudha, S; Sam, Dahlia; Srinidhi, S; (2020). Detect and classify zero day Malware efficiently in big data platform. International Journal of Advanced Science and Technology, 29(4s), 1947-1954 |
Olukoya, Oluwafemi; Mackenzie, Lewis; Omoronyia, Inah; (2020). Towards using unstructured user input request for malware detection. Computers & Security, 101783. Elsevier. |
Olukoya, Oluwafemi; Mackenzie, Lewis; Omoronyia, Inah; (2020). Security-oriented view of app behaviour using textual descriptions and user-granted permission requests. Computers & Security, 89, 101685. Elsevier. |
PEYNİRCİ, Gökçer; EMİNAĞAOĞLU, Mete; (2020). Android Platformunda Kötücül Yazılım Tespiti: Literatür İncelemesi.. International Journal of InformaticsTechnologies, 13(1) |
Pan, Ya; Ge, Xiuting; Fang, Chunrong; Fan, Yong; (2020). A Systematic Literature Review of Android Malware Detection Using Static Analysis. IEEE Access, 8, 116363-116379. IEEE. |
Patil, Rajendra; Dudeja, Harsha; Modi, Chirag; (2020). Designing in-VM-assisted lightweight agent-based malware detection framework for securing virtual machines in cloud computing. International Journal of Information Security, 19(2), 147-162. Springer. |
Raff, Edward; Nicholas, Charles; (2020). A Survey of Machine Learning Methods and Challenges for Windows Malware Classification. arXiv preprint arXiv:2006.09271 |
Raff, Edward; Nicholas, Charles; McLean, Mark; (2020). A New Burrows Wheeler Transform Markov Distance.. AAAI, 5444-5453 |
Rahul; Kedia, Priyansh; Sarangi, Subrat; Monika; (2020). Analysis of machine learning models for malware detection. Journal of Discrete Mathematical Sciences and Cryptography, 23(2), 395-407. Taylor & Francis. |
Rauf, Mohammad Afiq Amirul Abdul; Asraf, Syed Muhammad Hazry; Idrus, Syed Zulkarnain Syed; (2020). Malware Behaviour Analysis and Classification via Windows DLL and System Call. Journal of Physics: Conference Series, 1529(2), 022097. IOP Publishing. |
Ren, Zhongru; Wu, Haomin; Ning, Qian; Hussain, Iftikhar; Chen, Bingcai; (2020). End-to-end malware detection for android IoT devices using deep learning. Ad Hoc Networks, 101, 102098. Elsevier. |
Sajid, Md Sajidul Islam; Wei, Jinpeng; Alam, Md Rabbi; Aghaei, Ehsan; Al-Shaer, Ehab; (2020). DodgeTron: Towards Autonomous Cyber Deception Using Dynamic Hybrid Analysis of Malware. |
Sarker, Iqbal H; Kayes, ASM; Badsha, Shahriar; Alqahtani, Hamed; Watters, Paul; Ng, Alex; (2020). Cybersecurity data science: an overview from machine learning perspective. Journal of Big Data, 7(1), 1-29. Springer. |
Sayadi, Hossein; Gao, Yifeng; Makrani, Hosein; Sasan, Avesta; Lin, Jessica; Rafatirad, Setareh; Homayoun, Houman; (2020). Towards Run-Time Hardware-Assisted Stealthy Malware Detection. |
Shalabi, Eman; Moustafa, Ahmed; Khedr, Walid; (2020). On Malware Detection on Android Smartphones. |
Sharma, Shweta; Kumar, Naveen; Kumar, Rakesh; Krishna, C Rama; (2020). The Paradox of Choice: Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach. Communications of the Association for Information Systems, 46(1), 26 |
Sharmeen, Shaila; Huda, Shamsul; Abawajy, Jemal; Hassan, Mohammad Mehedi; (2020). An adaptive framework against android privilege escalation threats using deep learning and semi-supervised approaches. Applied Soft Computing, 89, 106089. Elsevier. |
Shaukat, Kamran; Luo, Suhuai; Varadharajan, Vijay; Hameed, Ibrahim A; Chen, Shan; Liu, Dongxi; Li, Jiaming; (2020). Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cybersecurity. Energies, 13(10), 2509. Multidisciplinary Digital Publishing Institute. |
Shobana, M; Poonkuzhali, S; (2020). A novel approach to detect IoT malware by system calls using Deep learning techniques. 2020 International Conference on Innovative Trends in Information Technology (ICITIIT), 1-5. IEEE. |
Singh, Jagsir; Singh, Jaswinder; (2020). Assessment of supervised machine learning algorithms using dynamic API calls for malware detection. International Journal of Computers and Applications, 1-8. Taylor & Francis. |
Singh, Jagsir; Singh, Jaswinder; (2020). Detection of malicious software by analyzing the behavioral artifacts using machine learning algorithms. Information and Software Technology, 121, 106273. Elsevier. |
Smith, Michael R; Johnson, Nicholas T; Ingram, Joe B; Carbajal, Armida J; Ramyaa, Ramyaa; Domschot, Evelyn; Lamb, Christopher C; Verzi, Stephen J; Kegelmeyer, W Philip; (2020). Mind the Gap: On Bridging the Semantic Gap between Machine Learning and Information Security. arXiv preprint arXiv:2005.01800 |
Suaboot, Jakapan; Tari, Zahir; Mahmood, Abdun; Zomaya, Albert Y; Li, Wei; (2020). Sub-curve HMM: A malware detection approach based on partial analysis of API call sequences. Computers & Security, 92, 101773. Elsevier. |
Sun, Ruimin; Botacin, Marcus; Sapountzis, Nikolaos; Yuan, Xiaoyong; Bishop, Matt; Porter, Donald E; Li, Xiaolin; Gregio, Andre; Oliveira, Daniela; (2020). A Praise for Defensive Programming: LeveragingUncertainty for Effective Malware Mitigation. IEEE Transactions on Dependable and Secure Computing. IEEE. |
Surendran, Roopak; Thomas, Tony; Emmanuel, Sabu; (2020). A TAN based hybrid model for android malware detection. Journal of Information Security and Applications, 54, 102483. Elsevier. |
Tanana, Dmitry; (2020). Behavior-Based Detection of Cryptojacking Malware. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 0543-0545. IEEE. |
Tang, Ying; (2020). Beyond EM: A faster Bayesian linear regression algorithm without matrix inversions. Neurocomputing, 378, 435-440. Elsevier. |
Tang, Zhijie; Wang, Peng; Wang, Junfeng; (2020). ConvProtoNet: Deep Prototype Induction towards Better Class Representation for Few-Shot Malware Classification. Applied Sciences, 10(8), 2847. Multidisciplinary Digital Publishing Institute. |
Tanuwidjaja, Harry Chandra; Kim, Kwangjo; (2020). Enhancing Malware Detection by Modified Deep Abstraction and Weighted Feature Selection. |
Thomas, Tony; Vijayaraghavan, Athira P; Emmanuel, Sabu; (2020). Adversarial Machine Learning in Cybersecurity. Machine Learning Approaches in Cyber Security Analytics, 185-200. Springer. |
Threats, Resizing; (2020). Lehrstuhl für Sicherheit in der Informatik. . Universität München. |
Tian, Ke; Tan, Gang; Ryder, Barbara G; Yao, Danfeng Daphne; (2020). Prioritizing data flows and sinks for app security transformation. Computers & Security, 92, 101750. Elsevier. |
Torabi, Sadegh; Bou-Harb, Elias; Assi, Chadi; Karbab, ElMouatez Billah; Boukhtouta, Amine; Debbabi, Mourad; (2020). Inferring and Investigating IoT-Generated Scanning Campaigns Targeting A Large Network Telescope. IEEE Transactions on Dependable and Secure Computing. IEEE. |
Tran, Nghi Phu; Nguyen, Dai Tho; Le, Huy Hoang; Nguyen, Ngoc Toan; Nguyen, Ngoc Binh; (2020). An Efficient Algorithm to Extract Control Flow-based Features for IoT Malware Detection. The Computer Journal. Oxford University Press. |
Vasan, Danish; Alazab, Mamoun; Wassan, Sobia; Safaei, Babak; Zheng, Qin; (2020). Image-based malware classification using ensemble of CNN architectures (IMCEC). Computers & Security, 101748. Elsevier. |
Wadkar, Mayuri; Di Troia, Fabio; Stamp, Mark; (2020). Detecting malware evolution using support vector machines. Expert Systems with Applications, 143, 113022. Elsevier. |
Wang, Fangwei; Yang, Shaojie; Li, Qingru; Wang, Changguan; (2020). An internet of things malware classification method based on mixture of experts neural network. Transactions on Emerging Telecommunications Technologies. Wiley Online Library. |
Wang, Guangyu; Liu, Zhijing; (2020). Android malware detection model based on lightgbm. Recent Trends in Intelligent Computing, Communication and Devices, 237-243. Springer. |
Wang, Qi; Hassan, Wajih Ul; Li, Ding; Jee, Kangkook; Yu, Xiao; Zou, Kexuan; Rhee, Junghwan; Chen, Zhengzhang; Cheng, Wei; Gunter, C; (2020). You are what you do: Hunting stealthy malware via data provenance analysis. Symposium on Network and Distributed System Security (NDSS) |
Wang, Shanshan; Chen, Zhenxiang; Yan, Qiben; Ji, Ke; Peng, Lizhi; Yang, Bo; Conti, Mauro; (2020). Deep and broad URL feature mining for android malware detection. Information Sciences, 513, 600-613. Elsevier. |
Wang, Xiruo; Miikkulainen, Risto; (2020). MDEA: Malware Detection with Evolutionary Adversarial Learning. arXiv preprint arXiv:2002.03331 |
Wilkins, Zachary; Zincir, Ibrahim; Zincir-Heywood, Nur; (2020). Exploring an artificial arms race for malware detection. Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, 1537-1545 |
Wu, Peng; Liu, Dong; Wang, Junfeng; Yuan, Baoguo; Kuang, Wenyuan; (2020). Detection of fake IoT app based on multi-dimensional similarity. IEEE Internet of Things Journal. IEEE. |
Xiao, Jianmao; Chen, Shizhan; He, Qiang; Feng, Zhiyong; Xue, Xiao; (2020). An Android application risk evaluation framework based on minimum permission set identification. Journal of Systems and Software, 163, 110533. Elsevier. |
Xu, Jiayun; Li, Yingjiu; Deng, Robert; Xu, Ke; (2020). SDAC: A Slow-Aging Solution for Android Malware Detection Using Semantic Distance Based API Clustering. IEEE Transactions on Dependable and Secure Computing. IEEE. |
Zhang, Jian; Gao, Cheng; Gong, Liangyi; Gu, Zhaojun; Man, Dapeng; Yang, Wu; Li, Wenzhen; (2020). Malware Detection Based on Multi-level and Dynamic Multi-feature Using Ensemble Learning at Hypervisor. Mobile Networks and Applications, 1-18. Springer. |
Zhu, Dali; Xi, Tong; Jing, Pengfei; Xia, Qing; Wu, Di; Zhang, Yiming; (2020). Sadroid: A Deep Classification Model For Android Malware Detection Based On Semantic Analysis. 2020 IEEE Wireless Communications and Networking Conference (WCNC), 1-7. IEEE. |
Zhu, Huijuan; Li, Yang; Li, Ruidong; Li, Jianqiang; You, Zhu-Hong; Song, Houbing; (2020). SEDMDroid: An enhanced stacking ensemble of deep learning framework for Android malware detection. IEEE Transactions on Network Science and Engineering. IEEE. |
Zuhair, Hiba; Selamat, Ali; Krejcar, Ondrej; (2020). A Multi-Tier Streaming Analytics Model of 0-Day Ransomware Detection Using Machine Learning. Applied Sciences, 10(9), 3210. Multidisciplinary Digital Publishing Institute. |
Ädel, Lukas; Eliasson, Oskar; (2020). The Development and Effectiveness of Malware Vaccination: An Experiment. |
Čeponis, Dainius; Goranin, Nikolaj; (2020). Investigation of Dual-Flow Deep Learning Models LSTM-FCN and GRU-FCN Efficiency against Single-Flow CNN Models for the Host-Based Intrusion and Malware Detection Task on Univariate Times Series Data. Applied Sciences, 10(7), 2373. Multidisciplinary Digital Publishing Institute. |
이윤석; (2020). 파일 접근 행태의 LSTM 학습을 활용한 악성 코드 탐지 기법. 한국정보기술학회논문지, 18(2), 25-32 |
• 2019 • |
Abdessadki, Imad; Lazaar, Saiida; (2019). New Classification Based Model for Malicious PE Files Detection.. International Journal of Computer Network & Information Security, 11(6) |
Ahlgren, Filip; (2019). Local And Network Ransomware Detection Comparison. |
Akbanov, Maxat; Vassilakis, Vassilios G; Logothetis, Michael D; (2019). WannaCry ransomware: Analysis of infection, persistence, recovery prevention and propagation mechanisms. Journal of Telecommunications and Information Technology |
Akbi, Denar Regata; (2019). Clustering Android Malware Berdasarkan Frekuensi System Call Menggunakan K-Means. Prosiding SENTRA (Seminar Teknologi dan Rekayasa)(4), 107-112 |
Akbi, Denar Regata; Herlambang, Sendi; Basuki, Setio; Sari, Zamah; (2019). DETEKSI MALWARE ANDROID BERDASARKAN SYSTEM CALL MENGGUNAKAN ALGORTIMA SUPPORT VECTOR MACHINE. Prosiding SENTRA (Seminar Teknologi dan Rekayasa)(4), 157-165 |
Akyol, Alican; (2019). Otomatik analiz sistemlerini atlatma ve alınabilecek olası önlemler. |
Al-rimy, Bander Ali Saleh; Maarof, Mohd Aizaini; Shaid, Syed Zainudeen Mohd; (2019). Crypto-ransomware early detection model using novel incremental bagging with enhanced semi-random subspace selection. Future Generation Computer Systems, 101, 476-491. Elsevier. |
Alaeiyan, Mohammadhadi; Parsa, Saeed; Conti, Mauro; (2019). Analysis and classification of context-based malware behavior. Computer Communications, 136, 76-90. Elsevier. |
Alenazi, Fahad S; El Hindi, Khalil; AsSadhan, Basil; (2019). Fine-Tuning Naïve Bayes for Imbalanced Datasets. |
Alhanahnah, Mohannad; (2019). Advanced Security Analysis for Emergent Software Platforms. |
Ali, Abdullah; (2019). Adversarial Approximation of a Black-Box Malware Detector. |
Ali, Waleed; (2019). Hybrid Intelligent Android Malware Detection Using Evolving Support Vector Machine Based on Genetic Algorithm and Particle Swarm Optimization Hybrid Intelligent Android Malware Detection Using Evolving Support Vector Machine Based on Genetic Algorithm and Particle Swarm Optimization. IJCSNS, 19(9), 15 |
Ali-Gombe, Aisha; Sudhakaran, Sneha; Case, Andrew; Richard III, Golden G; (2019). DroidScraper: A Tool for Android In-Memory Object Recovery and Reconstruction. 22nd International Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2019), 547-559 |
Alsmadi, Izzat; (2019). Forensics Analysis. The NICE Cyber Security Framework, 253-312. Springer. |
Alsulami, Bander; (2019). Behavioral Malware Detection and Classification Using Windows Prefetch Files. . Drexel University. |
Amin, Muhammad; Shah, Babar; Sharif, Aizaz; Ali, Tamleek; Kim, Ki‐lL; Anwar, Sajid; (2019). Android malware detection through generative adversarial networks. Transactions on Emerging Telecommunications Technologies, e3675. Wiley Online Library. |
Andrade, Eduardo de O; Viterbo, José; Vasconcelos, Cristina N; Guérin, Joris; Bernardini, Flavia Cristina; (2019). A Model Based on LSTM Neural Networks to Identify Five Different Types of Malware. Procedia Computer Science, 159, 182-191. Elsevier. |
Ashraf, Arslan; Aziz, Abdul; Zahoora, Umme; Khan, Asifullah; (2019). Ransomware Analysis using Feature Engineering and Deep Neural Networks. arXiv preprint arXiv:1910.00286 |
Azmee, ABM; Choudhury, Pranto Protim; Alam, Md; Dutta, Orko; (2019). Performance analysis of machine learning classi ers for detecting PE malware. . Brac University. |
Bahrani, Ala; Bidgly, Amir Jalaly; (2019). Ransomware detection using process mining and classification algorithms. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC), 73-77. IEEE. |
Bai, Liang; Rao, Yu; Lu, Shiwei; Liu, Xu; Hu, Yiyi; (2019). The Software Gene-Based Test Set Automatic Generation Framework for Antivirus Software.. JSW, 14(10), 449-456 |
Bak, Márton László; Papp, Dorottya; (2019). Clustering IoT Malware Samples based on Binary Similarity. |
Banin, Sergii; Dyrkolbotn, Geir Olav; (2019). Correlating High-and Low-Level Features. International Workshop on Security, 149-167. Springer. |
Baptista, Irina; Shiaeles, Stavros; Kolokotronis, Nicholas; (2019). A novel malware detection system based on machine learning and binary visualization. 2019 IEEE International Conference on Communications Workshops (ICC Workshops), 1-6. IEEE. |
Beegom, AS Ajeena; Ashok, Gayatri; (2019). Malware Detection in Android Applications Using Integrated Static Features. International Symposium on Security in Computing and Communication, 1-10. Springer. |
Beppler, Tamy E; Oliveira, Luiz ES; Grégio, André RA; (2019). Uma Proposta para Classificaç ao de Famılias de Programas Maliciosos baseada em Texturas. |
Beppler, Tamy; Botacin, Marcus; Ceschin, Fabrício JO; Oliveira, Luiz ES; Grégio, André; (2019). L (a) ying in (Test) Bed. International Conference on Information Security, 381-401. Springer. |
Berman, Daniel S; Buczak, Anna L; Chavis, Jeffrey S; Corbett, Cherita L; (2019). A survey of deep learning methods for cyber security. Information, 10(4), 122. Multidisciplinary Digital Publishing Institute. |
Bhat, Sahil; (2019). Defense Against Cache Based Micro-architectural Side Channel Attacks. |
Bhattacharya, Abhishek; Goswami, Radha Tamal; Mukherjee, Kuntal; (2019). A feature selection technique based on rough set and improvised PSO algorithm (PSORS-FS) for permission based detection of Android malwares. International Journal of Machine Learning and Cybernetics, 10(7), 1893-1907. Springer. |
Botacin, Marcus; Galante, Lucas; Ceschin, Fabricio; Santos, Paulo C; Carro, Luigi; de Geus, Paulo; Grégio, André; Alves, Marco AZ; (2019). The AV says: Your Hardware Definitions Were Updated!. 2019 14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 27-34. IEEE. |
Botacin, Marcus; Galante, Lucas; de Geus, Paulo; Grégio, André; (2019). RevEngE is a dish served cold: Debug-Oriented Malware Decompilation and Reassembly. Proceedings of the 3rd Reversing and Offensive-oriented Trends Symposium, 1-12 |
Botacin, Reassembly Marcus; Galante, Lucas; de Geus, Paulo; Grégio, André; (2019). RevEngE is a dish served cold: Debug-Oriented Malware Decompilation and Reassembly. Proceedings of the 3rd Reversing and Offensive-oriented Trends Symposium, 1-12 |
CAMARGO, EDUARDO; BASEADA, UMA FERRAMENTA DE VISUALIZACAO CIENTÍFICA; DE TRAJETORIA, NO ALGORITMO DE CALCULO; PARTÍCULAS, DE; GRAFICO, EM UNIDADES DE PROCESSAMENTO; (2019). MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA INSTITUTO MILITAR DE ENGENHARIA CURSO DE MESTRADO EM SISTEMAS E COMPUTACAO. |
Carlin, Domhnall; O’Kane, Philip; Sezer, Sakir; (2019). A cost analysis of machine learning using dynamic runtime opcodes for malware detection. Computers & Security, 85, 138-155. Elsevier. |
Chau, Ngoc-Tu; Jung, Souhwan; (2019). An entropy-based solution for identifying android packers. IEEE Access, 7, 28412-28421. IEEE. |
Chen, Bingcai; Ren, Zhongru; Yu, Chao; Hussain, Iftikhar; Liu, Jintao; (2019). Adversarial examples for CNN-based malware detectors. IEEE Access, 7, 54360-54371. IEEE. |
Chen, Xiao; Li, Chaoran; Wang, Derui; Wen, Sheng; Zhang, Jun; Nepal, Surya; Xiang, Yang; Ren, Kui; (2019). Android HIV: A study of repackaging malware for evading machine-learning detection. IEEE Transactions on Information Forensics and Security, 15, 987-1001. IEEE. |
Cheng, Binlin; Liu, Jinjun; Chen, Jiejie; Shi, Shudong; Peng, Xufu; Zhang, Xingwen; Hai, Haiqing; (2019). MoG: Behavior-Obfuscation Resistance Malware Detection. The Computer Journal, 62(12), 1734-1747. Oxford University Press. |
Cheng, Guang; Guo, Chunsheng; Tang, Yongning; (2019). dptCry: an approach to decrypting ransomware WannaCry based on API hooking. CCF Transactions on Networking, 2(3-4), 207-216. Springer. |
Cheng, Zhenyu; Chen, Xunxun; Zhang, Yongzheng; Li, Shuhao; Xu, Jian; (2019). MURITE-Detector: Identifying User-Role in Information Theft Events of Mobile Network. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 232-239. IEEE. |
Dai, Zhenwei; Shrivastava, Anshumali; (2019). Adaptive learned Bloom filter (Ada-BF): Efficient utilization of the classifier. arXiv preprint arXiv:1910.09131 |
Dam, Khanh Huu The; Touili, Tayssir; (2019). STAMAD: a STAtic MAlware Detector. Proceedings of the 14th International Conference on Availability, Reliability and Security, 1-6 |
Damjanovic-Behrendt, Violeta; Vallant, Heribert; Nahrgang, Kai; (2019). Identity, Security and Safety in Product Lifecycle Data Management. Journal of Advances in Security, 12(1&2) |
Darshan, SL Shiva; Jaidhar, CD; (2019). Empirical study on features recommended by lsvc in classifying unknown windows malware. Soft Computing for Problem Solving, 577-590. Springer. |
Darshan, SL Shiva; Jaidhar, CD; (2019). Windows malware detection system based on LSVC recommended hybrid features. Journal of Computer Virology and Hacking Techniques, 15(2), 127-146. Springer. |
Denzer, Thilo; (2019). Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics. . NTNU. |
Denzer, Thilo; Shalaginov, Andrii; Dyrkolbotn, Geir Olav; (2019). Intelligent Windows Malware Type Detection based on Multiple Sources of Dynamic Characteristics. NISK Journal, 12 |
Devi, KR; (2019). Android Malware Detection using Deep Learning. |
Dinakarrao, Sai Manoj Pudukotai; Amberkar, Sairaj; Bhat, Sahil; Dhavlle, Abhijitt; Sayadi, Hossein; Sasan, Avesta; Homayoun, Houman; Rafatirad, Setareh; (2019). Adversarial attack on microarchitectural events based malware detectors. Proceedings of the 56th Annual Design Automation Conference 2019, 1-6 |
Dinakarrao, Sai Manoj Pudukotai; Sayadi, Hossein; Makrani, Hosein Mohammadi; Nowzari, Cameron; Rafatirad, Setareh; Homayoun, Houman; (2019). Lightweight node-level malware detection and network-level malware confinement in iot networks. 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), 776-781. IEEE. |
Doll, Christian; Sykosch, Arnold; Ohm, Marc; Meier, Michael; (2019). Automated Pattern Inference Based on Repeatedly Observed Malware Artifacts. Proceedings of the 14th International Conference on Availability, Reliability and Security, 1-10 |
Duarte-Garcia, Hugo Leonardo; Morales-Medina, Carlos Domenick; Hernandez-Suarez, Aldo; Sanchez-Perez, Gabriel; Toscano-Medina, Karina; Perez-Meana, Hector; Sanchez, Victor; (2019). A Semi-supervised Learning Methodology for Malware Categorization using Weighted Word Embeddings. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), 238-246. IEEE. |
Egunjobi, Samuel; Parkinson, Simon; Crampton, Andrew; (2019). Classifying Ransomware Using Machine Learning Algorithms. International Conference on Intelligent Data Engineering and Automated Learning, 45-52. Springer. |
Ekman, Sebastian; (2019). En IT Forensik utredning med fria verktyg. |
Fadadu, Fenil; Handa, Anand; Kumar, Nitesh; Shukla, Sandeep Kumar; (2019). Evading API Call Sequence Based Malware Classifiers. International Conference on Information and Communications Security, 18-33. Springer. |
Fairouz, Abbas AEA; (2019). Design of Special Function Units in Modern Microprocessors. |
Fang, Qi; Yang, Xiaohui; Ji, Ce; (2019). A Hybrid Detection Method for Android Malware. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2127-2132. IEEE. |
Fang, Yong; Zhang, Wenjie; Li, Beibei; Jing, Fan; Zhang, Lei; (2019). Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API. IEEE Access, 8, 2313-2326. IEEE. |
Farré López, Xavier; (2019). Desplegar la herramienta" Zeek IDS" y su posterior explotación para el análisis de actividades sospechosas en la red. . Universitat Oberta de Catalunya (UOC). |
Feng, Ruitao; Chen, Sen; Xie, Xiaofei; Ma, Lei; Meng, Guozhu; Liu, Yang; Lin, Shang-Wei; (2019). Mobidroid: A performance-sensitive malware detection system on mobile platform. 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS), 61-70. IEEE. |
Fernández-Delgado, M; Sirsat, MS; Cernadas, Eva; Alawadi, Sadi; Barro, Senén; Febrero-Bande, Manuel; (2019). An extensive experimental survey of regression methods. Neural Networks, 111, 11-34. Elsevier. |
Ficco, Massimo; (2019). Detecting IoT malware by Markov chain behavioral models. 2019 IEEE International Conference on Cloud Engineering (IC2E), 229-234. IEEE. |
Fu, Hao; (2019). Detecting Malicious Behaviors in Mobile Applications. . University of California, Davis. |
Fu, Hao; Zheng, Zizhan; Zhu, Sencun; Mohapatra, Prasant; (2019). Keeping context in mind: Automating mobile app access control with user interface inspection. IEEE INFOCOM 2019-IEEE Conference on Computer Communications, 2089-2097. IEEE. |
Galante, Lucas; Botacin, Marcus; Grégio, André; de Geus, Paulo Lício; (2019). Machine Learning for Malware Detection: Beyond Accuracy Rates. Workshop de Trabalhos de Iniciação Científica e Conclusão de Curso de Gradução do XIX SBSEG |
Gandotra, Ekta; Bansal, Divya; Sofat, Sanjeev; (2019). Malware intelligence: beyond malware analysis. International Journal of Advanced Intelligence Paradigms, 13(1-2), 80-100. Inderscience Publishers (IEL). |
Han, Jinrong; Zhu, Ziyuan; Meng, Dan; (2019). Spatial-Temporal Attention Network for Malware Detection Using Micro-architecture Features. 2019 International Joint Conference on Neural Networks (IJCNN), 1-8. IEEE. |
Han, Weijie; Xue, Jingfeng; Wang, Yong; Huang, Lu; Kong, Zixiao; Mao, Limin; (2019). MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics. Computers & Security, 83, 208-233. Elsevier. |
Han, Weijie; Xue, Jingfeng; Wang, Yong; Liu, Zhenyan; Kong, Zixiao; (2019). MalInsight: A systematic profiling based malware detection framework. Journal of Network and Computer Applications, 125, 236-250. Elsevier. |
Hassan Naderi, Vinod P; Conti, Mauro; Parsa, Saeed; Alaeiyan, Mohammadhadi; (2019). Malware Signature Generation using Locality Sensitive Hashing. |
Hernandez Jimenez, Jarilyn M; (2019). Multimodal approach for malware detection. |
Herrera Silva, Juan A; Barona López, Lorena Isabel; Valdivieso Caraguay, Ángel Leonardo; Hernández-Álvarez, Myriam; (2019). A survey on situational awareness of ransomware attacks—detection and prevention parameters. Remote Sensing, 11(10), 1168. Multidisciplinary Digital Publishing Institute. |
Herrero Sanz, Pablo; (2019). Malware lab. |
Hirokawa, Nao; (2019). Generating a Dynamic Symbolic Execution Tool from MIPS Specifications. . Japan Advanced Institute of Science and Technology. |
Hoang, Dang Kien; Nguyen, Dai Tho; Vu, Duy Loi; (2019). Phân loại hành vi phần mềm độc hại trên các thiết bị IoT dựa vào system call. |
Hossain, Tanzeer; (2019). An Empirical Study on Deterministic Collusive Attack Using Inter Component Communication in Android Applications. . Wayne State University. |
Hsiao, Shou-Ching; Kao, Da-Yu; Liu, Zi-Yuan; Tso, Raylin; (2019). Malware image classification using one-shot learning with Siamese networks. Procedia Computer Science, 159, 1863-1871. Elsevier. |
Huang, Na; Xu, Ming; Zheng, Ning; Qiao, Tong; Choo, Kim-Kwang Raymond; (2019). Deep Android Malware Classification with API-Based Feature Graph. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 296-303. IEEE. |
Hung, Nguyen Viet; Dung, Pham Ngoc; Ngoc, Tran Nguyen; Phai, Vu Dinh; Shi, Qi; (2019). Malware detection based on directed multi-edge dataflow graph representation and convolutional neural network. 2019 11th International Conference on Knowledge and Systems Engineering (KSE), 1-5. IEEE. |
Hwang, Jun-ho; Kwak, Jin; Lee, Tae-jin; (2019). Fast k-NN based Malware Analysis in a Massive Malware Environment.. KSII Transactions on Internet & Information Systems, 13(12) |
Hwang, Jun-ho; Lee, Tae-jin; (2019). Study of Static Analysis and Ensemble-Based Linux Malware Classification. Journal of the Korea Institute of Information Security & Cryptology, 29(6), 1327-1337. Korea Institute of Information Security and Cryptology. |
Hwaseong, LEE; Choi, ChangHee; Jeong, Ilhoon; Hosang, YUN; (2019). Apparatus and method for classifying attack groups. . Google Patents. |
Håland, Magnus Simonsen; (2019). Multinomial malware classification using control flow graphs. . NTNU. |
Hải, Nguyễn Minh; Thơ, Quản Thành; (2019). SỬ DỤNG PHƯƠNG PHÁP HỌC SÂU TRONG BÀI TOÁN PHÁT HIỆN MÃ ĐỘC. PROCEEDING of Publishing House for Science and Technology |
Irshad, Areeba; Maurya, Ritesh; Dutta, Malay Kishore; Burget, Radim; Uher, Vaclav; (2019). Feature Optimization for Run Time Analysis of Malware in Windows Operating System using Machine Learning Approach. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), 255-260. IEEE. |
IŞIKTAŞ, FATİH; (2019). Application of subspace clustering to scalable malware clustering. . MIDDLE EAST TECHNICAL UNIVERSITY. |
Jimenez, Jarilyn Hernandez; Goseva-Popstojanova, Katerina; (2019). Malware Detection Using Power Consumption and Network Traffic Data. 2019 2nd International Conference on Data Intelligence and Security (ICDIS), 53-59. IEEE. |
John, Teenu S; Thomas, Tony; (2019). Adversarial attacks and defenses in malware detection classifiers. Handbook of Research on Cloud Computing and Big Data Applications in IoT, 127-150. IGI global. |
Jordan, Alexander; Gauthier, François; Hassanshahi, Behnaz; Zhao, David; (2019). Unacceptable Behavior: Robust PDF Malware Detection Using Abstract Interpretation. Proceedings of the 14th ACM SIGSAC Workshop on Programming Languages and Analysis for Security, 19-30 |
Jose, Rinu Rani; Salim, A; (2019). Integrated Static Analysis for Malware Variants Detection. International Conference on Inventive Computation Technologies, 622-629. Springer. |
Joseph, Paul; Norman, Jasmine; (2019). Forensic corpus data reduction techniques for faster analysis by eliminating tedious files. Information Security Journal: A Global Perspective, 28(4-5), 136-147. Taylor & Francis. |
Kalinowski, Pawel; (2019). Neural Networks For Malware Detection Using Static Analysis. . Naval Postgraduate School Monterey United States. |
Kapoor, Aditya; Kushwaha, Himanshu; Gandotra, Ekta; (2019). Malicious Android Application Detection using Machine Learning. . Jaypee University of Information Technology; Solan; HP. |
Kapoor, Aditya; Kushwaha, Himanshu; Gandotra, Ekta; (2019). Permission based Android Malicious Application Detection using Machine Learning. 2019 International Conference on Signal Processing and Communication (ICSC), 103-108. IEEE. |
Karamitas, Chariton; Kehagias, Athanasios; (2019). Function matching between binary executables: efficient algorithms and features. Journal of Computer Virology and Hacking Techniques, 15(4), 307-323. Springer. |
Kedziora, Michal; Gawin, Paulina; Szczepanik, Michal; Jozwiak, Ireneusz; (2019). Malware Detection Using Machine Learning Algorithms and Reverse Engineering of Android Java Code. International Journal of Network Security & Its Applications (IJNSA) Vol, 11 |
Khamis, Rana Abou; Shafiq, Omair; Matrawy, Ashraf; (2019). Investigating Resistance of Deep Learning-based IDS against Adversaries using min-max Optimization. arXiv preprint arXiv:1910.14107 |
Kim, Danny; (2019). Improving Existing Static and Dynamic Malware Detection Techniques with Instruction-level Behavior. |
Kim, Ki-Chang; Ko, Eunbyeol; Kim, Jinsung; Yi, Jeong Hyun; (2019). Intelligent Malware Detection Based on Hybrid Learning of API and ACG on Android.. J. Internet Serv. Inf. Secur., 9(4), 39-48 |
Kim, Su-jeong; Ha, Ji-hee; Oh, Soo-hyun; Lee, Tae-jin; (2019). A Study on Malware Identification System Using Static Analysis Based Machine Learning Technique. Journal of the Korea Institute of Information Security & Cryptology, 29(4), 775-784. Korea Institute of Information Security and Cryptology. |
Kolosnjaji, Bojan; (2019). Machine Learning for Anomaly Detection under Constraints. . Technische Universität München. |
Korczynski, David; (2019). A characterisation of system-wide propagation in the malware landscape. arXiv preprint arXiv:1908.10167 |
Krcál, Marek; Bálek, Martin; Svec, Ondrej; Vejmelka, Martin; (2019). Malware classification of executable files by convolutional networks. . Google Patents. |
Kumar, Ajit; Kuppusamy, KS; Aghila, G; (2019). A learning model to detect maliciousness of portable executable using integrated feature set. Journal of King Saud University-Computer and Information Sciences, 31(2), 252-265. Elsevier. |
Kumar, Nitesh; Kumar, Vinay; Gaur, Manish; (2019). Banking Trojans APK Detection using Formal Methods. 2019 4th International Conference on Information Systems and Computer Networks (ISCON), 606-609. IEEE. |
Kumar, Nitesh; Mukhopadhyay, Subhasis; Gupta, Mugdha; Handa, Anand; Shukla, Sandeep K; (2019). Malware Classification using Early Stage Behavioral Analysis. 2019 14th Asia Joint Conference on Information Security (AsiaJCIS), 16-23. IEEE. |
Kuo, Wen-Chung; Liu, Tsung-Ping; Wang, Chun-Cheng; (2019). Study on Android Hybrid Malware Detection Based on Machine Learning. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), 31-35. IEEE. |
Laurenza, Giuseppe; Lazzeretti, Riccardo; (2019). dAPTaset: A Comprehensive Mapping of APT-Related Data. Computer Security, 217-225. Springer. |
Le, Nguyen Minh; (2019). Applying Clustering Techniques for Refining Large Data Set (Case Study on Malware). . Japan Advanced Institute of Science and Technology. |
Lee, Hyunjong; Euh, Seongyul; Hwang, Doosung; (2019). API Feature Based Ensemble Model for Malware Family Classification. Journal of the Korea Institute of Information Security & Cryptology, 29(3), 531-539. Korea Institute of Information Security and Cryptology. |
Lee, Hyunjong; Euh, Seongyul; Hwang, Doosung; (2019). Distributed Processing System Design and Implementation for Feature Extraction from Large-Scale Malicious Code. KIPS Transactions on Computer and Communication Systems, 8(2), 35-40. Korea Information Processing Society. |
Lee, Suhyeon; Kim, Huy Kang; Kim, Kyounggon; (2019). Ransomware protection using the moving target defense perspective. Computers & Electrical Engineering, 78, 288-299. Elsevier. |
Lei, Tao; Qin, Zhan; Wang, Zhibo; Li, Qi; Ye, Dengpan; (2019). EveDroid: Event-aware Android malware detection against model degrading for IoT devices. IEEE Internet of Things Journal, 6(4), 6668-6680. IEEE. |
Li, Fang; Yan, Chao; Zhu, Ziyuan; Meng, Dan; (2019). A Deep Malware Detection Method Based on General-Purpose Register Features. International Conference on Computational Science, 221-235. Springer. |
Li, Heng; Zhou, ShiYao; Yuan, Wei; Li, Jiahuan; Leung, Henry; (2019). Adversarial-example attacks toward android malware detection system. IEEE Systems Journal, 14(1), 653-656. IEEE. |
Li, Li; Bissyandé, Tegawendé F; Wang, Hao-Yu; Klein, Jacques; (2019). On identifying and explaining similarities in android apps. Journal of Computer Science and Technology, 34(2), 437-455. Springer. |
Li, Li; Bissyandé, Tegawendé F; Wang, Hao-Yu; Klein, Jacques; (2019). 基于安卓重打包应用程序的恶意代码定位研究. 计算机科学技术学报, 34(2), 437-455 |
Li, Miles Q; Fung, Benjamin; Charland, Philippe; Ding, Steven HH; (2019). I-MAD: A Novel Interpretable Malware Detector Using Hierarchical Transformer. arXiv preprint arXiv:1909.06865 |
Li, Richard; Du, Min; Johnson, David; Ricci, Robert; Van der Merwe, Jacobus; Eide, Eric; (2019). Fluorescence: Detecting Kernel-Resident Malware in Clouds. 22nd International Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2019), 367-382 |
Li, Wenzhao; Liu, Zhao; (2019). Android Malicious Application Detection Method Based on Multi-class Characteristics. Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelligence, 157-161 |
Li, Xingwei; Shan, Zheng; Liu, Fudong; Chen, Yihang; Hou, Yifan; (2019). A consistently-executing graph-based approach for malware packer identification. IEEE Access, 7, 51620-51629. IEEE. |
Li, Yuping; Jang, Jiyong; Ou, Xinming; (2019). Topology-Aware Hashing for Effective Control Flow Graph Similarity Analysis. International Conference on Security and Privacy in Communication Systems, 278-298. Springer. |
Li, Zhiqiang; Sun, Jun; Yan, Qiben; Srisa-an, Witawas; Tsutano, Yutaka; (2019). Obfusifier: Obfuscation-resistant Android malware detection system. International Conference on Security and Privacy in Communication Systems, 214-234. Springer. |
Lim, Charles; Ramli, Kalamullah; Kotualubun, Yohanes Syailendra; (2019). Mal-flux: Rendering hidden code of packed binary executable. Digital Investigation, 28, 83-95. Elsevier. |
Ling, Jie; Chen, Fangye; (2019). An Android malware detection Approach based on Weisfeiler-Lehman Kernel. 2019 International Conference on Computer, Network, Communication and Information Systems (CNCI 2019). Atlantis Press. |
Liu, Ming; (2019). Scalable processing methods for host-based intrusion detection systems. |
Lu, Renjie; (2019). Malware Detection with LSTM using Opcode Language. arXiv preprint arXiv:1906.04593 |
Lu, Renjie; (2019). SCGDet: Malware Detection using Semantic Features Based on Reachability Relation. arXiv preprint arXiv:1906.04632 |
Lu, Xiaofeng; Wang, Fei; Shu, Zifeng; (2019). Malicious Word Document Detection Based on Multi-View Features Learning. 2019 28th International Conference on Computer Communication and Networks (ICCCN), 1-6. IEEE. |
Luo, Xiong; Li, Jianyuan; Wang, Weiping; Gao, Yang; Zhao, Wenbing; (2019). A Malware Identification and Detection Method Using Mixture Correntropy-Based Deep Neural Network. Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health, 321-334. Springer. |
Ma, Xin; Guo, Shize; Bai, Wei; Chen, Jun; Xia, Shiming; Pan, Zhisong; (2019). An API Semantics-Aware Malware Detection Method Based on Deep Learning. Security and Communication Networks, 2019. Hindawi. |
Mahdavifar, Samaneh; Ghorbani, Ali A; (2019). Application of deep learning to cybersecurity: A survey. Neurocomputing, 347, 149-176. Elsevier. |
Maigida, Abdullahi Mohammed; Olalere, Morufu; Alhassan, John K; Chiroma, Haruna; Dada, Emmanuel Gbenga; (2019). Systematic literature review and metadata analysis of ransomware attacks and detection mechanisms. Journal of Reliable Intelligent Environments, 5(2), 67-89. Springer. |
Masabo, Emmanuel; (2019). A Feature Engineering Approach for Classification and Detection of Polymorphic Malware using Machine Learning. . Makerere University. |
McGiff, Josh; Hatcher, William G; Nguyen, James; Yu, Wei; Blasch, Erik; Lu, Chao; (2019). Towards multimodal learning for android malware detection. 2019 International Conference on Computing, Networking and Communications (ICNC), 432-436. IEEE. |
McLaren, Peter; Buchanan, William J; Russell, Gordon; Tan, Zhiyuan; (2019). Discovering Encrypted Bot and Ransomware Payloads Through Memory Inspection Without A Priori Knowledge. arXiv preprint arXiv:1907.11954 |
Melero Bargues, Carlos; (2019). Esteganografía usando la redundancia en el juego de instrucciones de la arquitectura Intel x86-64. |
Meng, Zhaoyi; Xiong, Yan; Huang, Wenchao; Qin, Lei; Jin, Xin; Yan, Hongbing; (2019). AppScalpel: Combining static analysis and outlier detection to identify and prune undesirable usage of sensitive data in Android applications. Neurocomputing, 341, 10-25. Elsevier. |
Menéndez, Héctor D; Bhattacharya, Sukriti; Clark, David; Barr, Earl T; (2019). The arms race: Adversarial search defeats entropy used to detect malware. Expert Systems with Applications, 118, 246-260. Elsevier. |
Menéndez, Héctor D; Llorente, José Luis; (2019). Mimicking anti-viruses with machine learning and entropy profiles. Entropy, 21(5), 513. Multidisciplinary Digital Publishing Institute. |
Michal, Buchovecký; (2019). Semi-supervised learning pro detekci malware. . České vysoké učení technické v Praze. Vypočetní a informační centrum.. |
Mills, Alan; Spyridopoulos, Theodoros; Legg, Phil; (2019). Efficient and interpretable real-time malware detection using random-forest. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA), 1-8. IEEE. |
Moe, Kyaw Soe; Thwe, Mya Mya; (2019). Adaptive Mobile Malware Det. |
Moussaileb, Routa; Berti, Charles; Deboisdeffre, Guillaume; Cuppens, Nora; Lanet, Jean-Louis; (2019). Watch Out! Doxware on the Way.... International Conference on Risks and Security of Internet and Systems, 279-292. Springer. |
Moussaileb, Routa; Cuppens, Nora; Lanet, Jean-Louis; Le Bouder, Hélène; (2019). Ransomware Network Traffic Analysis for Pre-Encryption Alert. International Symposium on Foundations and Practice of Security, 20-38. Springer. |
Mu, Tianshi; Chen, Huajun; Du, Jinran; Xu, Aidong; (2019). An Android Malware Detection Method Using Deep Learning Based on API Calls. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2001-2004. IEEE. |
Murthaja, Mifraz; Sahayanathan, Benjamine; Munasinghe, ANTS; Uthayakumar, Diluxana; Rupasinghe, Lakmal; Senarathne, Amila; (2019). An Automated Tool for Memory Forensics. 2019 International Conference on Advancements in Computing (ICAC), 1-6. IEEE. |
Mutyethau, David Matingi; (2019). Developing an automated malware detection, analysis and reporting tool for MS-Windows. . Strathmore University. |
Naderi, Hassan; Vinod, P; Conti, Mauro; Parsa, Saeed; Alaeiyan, Mohammad Hadi; (2019). Malware signature generation using locality sensitive hashing. International Conference on Security & Privacy, 115-124. Springer. |
Naeem, Hamad; Guo, Bing; Naeem, Muhammad Rashid; Ullah, Farhan; Aldabbas, Hamza; Javed, Muhammad Sufyan; (2019). Identification of malicious code variants based on image visualization. Computers & Electrical Engineering, 76, 225-237. Elsevier. |
Naeem, Hamad; Guo, Bing; Ullah, Farhan; Naeem, Muhammad Rashid; (2019). A Cross-Platform Malware Variant Classification based on Image Representation.. KSII Transactions on Internet & Information Systems, 13(7) |
Naway, Abdelmonim; Li, Yuancheng; (2019). Android Malware Detection Using Autoencoder. arXiv preprint arXiv:1901.07315 |
Naway, Abdelmonim; Li, Yuancheng; (2019). Using Deep Neural Network for Android Malware Detection. arXiv preprint arXiv:1904.00736 |
Naz, Saima; Singh, Dushyant Kumar; (2019). Review of Machine Learning Methods for Windows Malware Detection. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-6. IEEE. |
Ndibanje, Bruce; Kim, Ki Hwan; Kang, Young Jin; Kim, Hyun Ho; Kim, Tae Yong; Lee, Hoon Jae; (2019). Cross-method-based analysis and classification of malicious behavior by api calls extraction. Applied Sciences, 9(2), 239. Multidisciplinary Digital Publishing Institute. |
Ng, Chee Keong; Jiang, Frank; Zhang, Leo Yu; Zhou, Wanlei; (2019). Static malware clustering using enhanced deep embedding method. Concurrency and Computation: Practice and Experience, 31(19), e5234. Wiley Online Library. |
Nguyen, Huy-Trung; Ngo, Quoc-Dung; Le, Van-Hoang; (2019). A novel graph-based approach for IoT botnet detection. International Journal of Information Security, 1-11. Springer. |
Nguyen, Huy-Trung; Nguyen, Doan-Hieu; Ngo, Quoc-Dung; Tran, Vu-Hai; Le, Van-Hoang; (2019). Towards a rooted subgraph classifier for IoT botnet detection. Proceedings of the 2019 7th International Conference on Computer and Communications Management, 247-251 |
Nguyen, Thien Binh; Tran, Cong Doi; Quan, Thanh Tho; Nguyen, Minh Hai; Le, Tuan Anh; (2019). MarCHGen: A framework for generating a malware concept hierarchy. Expert Systems, 36(5), e12445. Wiley Online Library. |
Nguyen-Vu, Long; Ahn, Jinung; Jung, Souhwan; (2019). Android fragmentation in malware detection. Computers & Security, 87, 101573. Elsevier. |
Niu, Weina; Zhang, Xiaosong; Du, Xiaojiang; Hu, Teng; Xie, Xin; Guizani, Nadra; (2019). Detecting Malware on X86-Based IoT Devices in Autonomous Driving. IEEE Wireless Communications, 26(4), 80-87. IEEE. |
Nottingham, Bailey Brian; (2019). An Algorithm And Implementation To Detect Covert Channels And Data Leakage In Mobile Applications. . The University of Arizona.. |
Nunes, Matthew; (2019). Comparing the utility of User-level and Kernel-level data for Dynamic Malware Analysis. . Cardiff University. |
Nunes, Matthew; Burnap, Pete; Rana, Omer; Reinecke, Philipp; Lloyd, Kaelon; (2019). Getting to the root of the problem: A detailed comparison of kernel and user level data for dynamic malware analysis. Journal of Information Security and Applications, 48, 102365. Elsevier. |
Nurnoby, M Faisal; El-Alfy, El-Sayed M; (2019). Overview and Case Study for Ransomware Classification Using Deep Neural Network. 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM), 1-6. IEEE. |
Ognev, RA; Zhukovskii, EV; Zegzhda, Dmitry P; (2019). Clustering of Malicious Executable Files Based on the Sequence Analysis of System Calls. Automatic Control and Computer Sciences, 53(8), 1045-1055. Springer. |
Oliveira, Angelo; Sassi, Renato José; (2019). Behavioral Malware Detection Using Deep Graph Convolutional Neural Networks. . TechRxiv. |
Olowoyo, Olufikayo; Owolawi, Pius Adewale; (2019). Detection of Malware using Artificial Neural Networks. 2019 International Multidisciplinary Information Technology and Engineering Conference (IMITEC), 1-6. IEEE. |
Onwuzurike, Lucky; (2019). Measuring and Mitigating Security and Privacy Issues on Android Applications. . UCL (University College London). |
Onwuzurike, Lucky; Mariconti, Enrico; Andriotis, Panagiotis; Cristofaro, Emiliano De; Ross, Gordon; Stringhini, Gianluca; (2019). MaMaDroid: Detecting Android malware by building Markov chains of behavioral models (extended version). ACM Transactions on Privacy and Security (TOPS), 22(2), 1-34. ACM New York, NY, USA. |
POORNACHANDRAN, PRABAHARAN; VENKATRAMAN, SITALAKSHMI; (2019). Robust Intelligent Malware Detection Using Deep Learning. |
Palisse, Aurélien; (2019). Analyse et détection de logiciels de rançon. . Rennes 1. |
Pang, Jiaqi; Bian, Jiali; (2019). Android Malware Detection Based on Naive Bayes. 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), 483-486. IEEE. |
Pang, Ying; Chen, Zhenxiang; Peng, Lizhi; Ma, Kun; Zhao, Chuan; Ji, Ke; (2019). A Signature-Based Assistant Random Oversampling Method for Malware Detection. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 256-263. IEEE. |
Pang, Ying; Peng, Lizhi; Chen, Zhenxiang; Yang, Bo; Zhang, Hongli; (2019). Imbalanced learning based on adaptive weighting and Gaussian function synthesizing with an application on Android malware detection. Information Sciences, 484, 95-112. Elsevier. |
Parildi, Enes Sinan; (2019). Deep Learning Aided Runtime Opcode Based Malware Detection. |
Pastrana, Sergio; Suarez-Tangil, Guillermo; (2019). A first look at the crypto-mining malware ecosystem: A decade of unrestricted wealth. Proceedings of the Internet Measurement Conference, 73-86 |
Phu, Tran Nghi; Dang, Kien Hoang; Quoc, Dung Ngo; Dai, Nguyen Tho; Binh, Nguyen Ngoc; (2019). A Novel Framework to Classify Malware in MIPS Architecture-Based IoT Devices. Security and Communication Networks, 2019. Hindawi. |
Phu, Tran Nghi; Hoang, Le Huy; Toan, Nguyen Ngoc; Tho, Nguyen Dai; Binh, Nguyen Ngoc; (2019). CFDVex: A Novel Feature Extraction Method for Detecting Cross-Architecture IoT Malware. Proceedings of the Tenth International Symposium on Information and Communication Technology, 248-254 |
Phu, Tran Nghi; Hoang, Le; Toan, Nguyen Ngoc; Dai Tho, Nguyen; Binh, Nguyen Ngoc; (2019). C500-CFG: A Novel Algorithm to Extract Control Flow-based Features for IoT Malware Detection. 2019 19th International Symposium on Communications and Information Technologies (ISCIT), 568-573. IEEE. |
Pinheiro, Ricardo; Lima, Sidney; Fernandes, Sérgio; Albuquerque, Edison; Medeiros, Sergio; Souza, Danilo; Monteiro, Thyago; Lopes, Petrônio; Lima, Rafael; Oliveira, Jemerson; (2019). Next Generation Antivirus Applied to Jar Malware Detection based on Runtime Behaviors using Neural Networks. 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), 28-32. IEEE. |
Puranik, Piyush Aniruddha; (2019). Static Malware Detection Using Deep Neural Networks on Portable Executables. |
Qamar, Attia; Karim, Ahmad; Chang, Victor; (2019). Mobile malware attacks: Review, taxonomy & future directions. Future Generation Computer Systems, 97, 887-909. Elsevier. |
Qasem, Abdullah; Zhioua, Sami; Makhlouf, Karima; (2019). Finding a Needle in a Haystack: The Traffic Analysis Version. Proceedings on Privacy Enhancing Technologies, 2019(2), 270-290. Sciendo. |
Qin, Xiaoxia; Zeng, Fangping; Zhang, Yu; (2019). MSNdroid: the Android malware detector based on multi-class features and deep belief network. Proceedings of the ACM Turing Celebration Conference-China, 1-5 |
Raff, Edward; Fleming, William; Zak, Richard; Anderson, Hyrum; Finlayson, Bill; Nicholas, Charles; McLean, Mark; (2019). KiloGrams: Very Large N-Grams for Malware Classification. arXiv preprint arXiv:1908.00200 |
Rahnama, Arash; Nguyen, Andre T; Raff, Edward; (2019). Connecting lyapunov control theory to adversarial attacks. arXiv preprint arXiv:1907.07732 |
Raju, Godwin; Zavarsky, Pavol; Makanju, Adetokunbo; Malik, Yasir; (2019). Vulnerability assessment of machine learning based malware classification models. Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1615-1618 |
Randive, Onkar; (2019). Analyzing Hardware Based Malware Detectors Using Machine Learning Techniques. |
Ranjitham, M Christina; Karpagavalli, C; Asir, D; (2019). A Novel Technique to Protect the Stealing of Authorization Code Using Hybrid Approach. |
Regard, Viktor; (2019). Studying the effectiveness of dynamic analysis for fingerprinting Android malware behavior. |
Rhode, Matilda; Burnap, Pete; Jones, Kevin; (2019). Distillation for run-time malware process detection and automated process killing. arXiv preprint arXiv:1902.02598 |
Rhode, Matilda; Tuson, Lewis; Burnap, Pete; Jones, Kevin; (2019). Lab to soc: Robust features for dynamic malware detection. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks–Industry Track, 13-16. IEEE. |
Rong, Chuitian; Cheng, Xiaohai; Chen, Ziliang; Huo, Na; (2019). Similarity joins for high‐dimensional data using Spark. Concurrency and Computation: Practice and Experience, 31(20), e5339. Wiley Online Library. |
Roth, Robin; Lundblad, Martin; (2019). An Evaluation of Machine Learning Approaches for Hierarchical Malware Classification. |
SUPERIOR, ESCUELA Tecnica; (2019). A Systematic Empirical Analysis of Unwanted Software Abuse, Prevalence, Distribution, and Economics. |
Sahiba, Km; Srivastava, Alok Kumar; (2019). A Lightweight Approach to Track and Protect Authorization Codes in SMS Messages. |
Samara, Mohammed; El-Alfy, El-Sayed M; (2019). Benchmarking Open-Source Android Malware Detection Tools. 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM), 1-6. IEEE. |
San Zaw, Kyaw; Vasupongayya, Sangsuree; (2019). A case-based reasoning approach for automatic adaptation of classifiers in mobile phishing detection. Journal of Computer Networks and Communications, 2019. Hindawi. |
San, Cho Cho; (2019). Effective Malicious Features Extraction and Classification for Incident Handling Systems. . University of Computer Studies, Yangon. |
San, Cho Cho; Thwin, Mie Mie Su; (2019). Selecting Prominent API Calls and Labeling Malicious Samples for Effective Malware Family Classification. International Journal of Computer Science and Information Security (IJCSIS), 17(5) |
San, Cho Cho; Thwin, Mie Mie Su; (2019). Proposed Effective Feature Extraction and Selection for Malicious Software Classification. Advances in Biometrics, 51-71. Springer. |
San, Cho Cho; Thwin, Mie Mie Su; Htun, Naing Linn; (2019). Malicious software family classification using machine learning multi-class classifiers. Computational Science and Technology, 423-433. Springer. |
Sandeep, HR; (2019). Static Analysis of Android Malware Detection using Deep Learning. 2019 International Conference on Intelligent Computing and Control Systems (ICCS), 841-845. IEEE. |
Saxena, Saumya; (2019). Malware Detection using Behavioral Whitelisting of Software. . Drexel University. |
Saxena, Saumya; Mancoridis, Spiros; (2019). Malware Detection using Behavioral Whitelisting of Computer Systems. 2019 IEEE International Symposium on Technologies for Homeland Security (HST), 1-6. IEEE. |
Sayadi, Hossein; (2019). Machine Learning-Based Solutions for Secure and Energy-Efficient Computer Systems. . George Mason University. |
Sayadi, Hossein; Makrani, Hosein Mohammadi; Dinakarrao, Sai Manoj Pudukotai; Mohsenin, Tinoosh; Sasan, Avesta; Rafatirad, Setareh; Homayoun, Houman; (2019). 2smart: A two-stage machine learning-based approach for run-time specialized hardware-assisted malware detection. 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), 728-733. IEEE. |
Serketzis, Nikolaos; Katos, Vasilis; Ilioudis, Christos; Baltatzis, Dimitrios; Pangalos, G; (2019). Actionable threat intelligence for digital forensics readiness. Information and Computer Security, 27(2), 273-291 |
Sethi, Kamalakanta; Kumar, Rahul; Sethi, Lingaraj; Bera, Padmalochan; Patra, Prashanta Kumar; (2019). A Novel Machine Learning Based Malware Detection and Classification Framework. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), 1-4. IEEE. |
Sharif, Mahmood; (2019). Practical Inference-Time Attacks Against Machine-Learning Systems and a Defense Against Them. . Carnegie Mellon University. |
Sharif, Mahmood; Lucas, Keane; Bauer, Lujo; Reiter, Michael K; Shintre, Saurabh; (2019). Optimization-Guided Binary Diversification to Mislead Neural Networks for Malware Detection. arXiv preprint arXiv:1912.09064 |
Sharma, Arindam; Malacaria, Pasquale; Khouzani, MHR; (2019). Malware detection using 1-dimensional convolutional neural networks. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), 247-256. IEEE. |
Sharma, Arushi; Gandotra, Ekta; Bansal, Divya; Gupta, Deepak; (2019). Malware capability assessment using fuzzy logic. Cybernetics and Systems, 50(4), 323-338. Taylor & Francis. |
Siddiqi, Arif; (2019). Adversarial security attacks and perturbations on machine learning and deep learning methods. arXiv preprint arXiv:1907.07291 |
Silva, Juan A Herrera; Veloz, Freddy Daniel Bazante; López, Lorena Isabel Barona; Leonardo, Ángel; Caraguay, Valdivieso; Hernández-Álvarez, Myriam; (2019). Dataset de Ransomware basado en análisis dinámico. Revista Ibérica de Sistemas e Tecnologias de Informação(E23), 248-261. Associação Ibérica de Sistemas e Tecnologias de Informacao. |
Singh, Ajay; Handa, Anand; Kumar, Nitesh; Shukla, Sandeep Kumar; (2019). Malware classification using image representation. International Symposium on Cyber Security Cryptography and Machine Learning, 75-92. Springer. |
Singla, Ankush; Bertino, Elisa; (2019). How deep learning is making information security more intelligent. IEEE Security & Privacy, 17(3), 56-65. IEEE. |
Sivakorn, Suphannee; Jee, Kangkook; Sun, Yixin; Korts-Pärn, Lauri; Li, Zhichun; Lumezanu, Cristian; Wu, Zhenyu; Tang, Lu-An; Li, Ding; (2019). Countering Malicious Processes with Process-DNS Association.. NDSS |
Sujatha, P; Sivasankari, S; Devi, R; (2019). A Review on Malware and Malware Detection Techniques. |
Sun, Cong; Chen, Jun; Feng, Pengbin; Ma, Jianfeng; (2019). CatraDroid: A Call Trace Driven Detection of Malicious Behaiviors in Android Applications. International Conference on Machine Learning for Cyber Security, 63-77. Springer. |
Sun, XingPing; Peng, JiaYuan; Kang, HongWei; Shen, Yong; (2019). Android Malware Detection using Sequential Convolutional Neural Networks. Journal of Physics: Conference Series, 1168(6), 062010. IOP Publishing. |
Thwe, Yoon Myet; Ogawa, Mizuhito; Dung, Pham Ngoc; (2019). Applying Clustering Techniques for Refining Large Data Set: Case Study on Malware. 2019 International Conference on Advanced Information Technologies (ICAIT), 238-243. IEEE. |
Tian, Donghai; Ma, Rui; Jia, Xiaoqi; Hu, Changzhen; (2019). A Kernel Rootkit Detection Approach Based on Virtualization and Machine Learning. IEEE Access, 7, 91657-91666. IEEE. |
Tiwari, Pradeep Kumar; Velayutham, T; (2019). Automated Ensembling of Features from Android Applications for Malware Detection. 2019 International Conference on Cutting-edge Technologies in Engineering (ICon-CuTE), 4-8. IEEE. |
Tokmak, Mahmut; Küçüksille, Ecir Uğur; (2019). Kötü Amaçlı Windows Çalıştırılabilir Dosyalarının Derin Öğrenme İle Tespiti. Bilge International Journal of Science and Technology Research, 3(1), 67-76 |
Tong, Valérie Viet Triem; Herzog, Cédric; Miranda, Tomás Concepción; Graux, Pierre; Lalande, Jean-François; Wilke, Pierre; (2019). Isolating malicious code in Android malware in the wild. |
Touili, Tayssir; Ye, Xin; (2019). LTL Model Checking of Self Modifying Code. 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS), 1-10. IEEE. |
Tran, Nghi Phu; Le, Huy Hoang; Nguyen, Ngoc Toan; Nguyen, Dai Tho; Nguyen, Ngoc Binh; (2019). C500-CFG: A Novel Algorithm to Extract Control Flow-Based Features for IoT Malware Detection. |
Tran, Nghi Phu; Le, Huy Hoang; Nguyen, Ngoc Toan; Nguyen, Dai Tho; Nguyen, Ngoc Binh; (2019). CFDVex: A Novel Feature Extraction Method for Detecting Cross-Architecture IoT Malware. |
Uppin, Chandrashekhar; George, Gilbert; (2019). Analysis of Android Malware Using Data Replication Features Extracted by Machine Learning Tools. |
Verma, Rakesh M; Zeng, Victor; Faridi, Houtan; (2019). Data Quality for Security Challenges: Case Studies of Phishing, Malware and Intrusion Detection Datasets. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2605-2607 |
Vidyarthi, Deepti; Damri, Gaurav; Rakshit, Subrata; Suthikshn Kumar, CR; Chansarkar, Shailesh; (2019). Classification of malicious process using high‐level activity based dynamic analysis. Security and Privacy, 2(6), e86. Wiley Online Library. |
Vinayakumar, R; Alazab, Mamoun; Soman, KP; Poornachandran, Prabaharan; Venkatraman, Sitalakshmi; (2019). Robust intelligent malware detection using deep learning. IEEE Access, 7, 46717-46738. IEEE. |
Vu, Anh V; Ogawa, Mizuhito; (2019). Formal semantics extraction from natural language specifications for ARM. International Symposium on Formal Methods, 465-483. Springer. |
Vu, Duc-Ly; Nguyen, Trong-Kha; Nguyen, Tam V; Nguyen, Tu N; Massacci, Fabio; Phung, Phu H; (2019). A convolutional transformation network for malware classification. 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), 234-239. IEEE. |
Vu, Duc‐Ly; Nguyen, Trong‐Kha; Nguyen, Tam V; Nguyen, Tu N; Massacci, Fabio; Phung, Phu H; (2019). HIT4Mal: Hybrid image transformation for malware classification. Transactions on Emerging Telecommunications Technologies, e3789. Wiley Online Library. |
Văduva, Jan-Alexandru; PAȘCA, Vlad-Raul; Florea, Iulia-Maria; RUGHINIȘ, Răzvan; (2019). Applications of Machine Learning in Malware Detection.. eLearning & Software for Education, 2 |
Wang, Shu-wei; Zhou, Gang; Lu, Ji-cang; Zhang, Feng-juan; (2019). A Novel Malware Detection and Classification Method Based on Capsule Network. International Conference on Artificial Intelligence and Security, 573-584. Springer. |
Wang, Wei; Zhao, Mengxue; Wang, Jigang; (2019). Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. Journal of Ambient Intelligence and Humanized Computing, 10(8), 3035-3043. Springer. |
Wang, Xiao; Zhang, Jianbiao; Zhang, Ai; Ren, Jinchang; (2019). TKRD: Trusted kernel rootkit detection for cybersecurity of VMs based on machine learning and memory forensic analysis. Mathematical Biosciences and Engineering, 16(4), 2650-2667 |
Wang, Zhen; Li, Kai; Hu, Yan; Fukuda, Akira; Kong, Weiqiang; (2019). Multilevel Permission Extraction in Android Applications for Malware Detection. 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), 1-5. IEEE. |
Wang, Zhiqiang; Li, Gefei; Chi, Yaping; Zhang, Jianyi; Yang, Tao; Liu, Qixu; (2019). Android Malware Detection Based on Convolutional Neural Networks. Proceedings of the 3rd International Conference on Computer Science and Application Engineering, 1-6 |
Wilkins, Zachary; Zincir-Heywood, Nur; (2019). Darwinian malware detectors: a comparison of evolutionary solutions to android malware. Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1651-1658 |
Win, Htet Htet; (2019). Permission-Based Anomalous Application Detection on Android Smart Phone. . University of Computer Studies, Yangon. |
Wu, Fei; Xiao, Limin; Zhu, Jinbin; (2019). Bayesian Model Updating Method Based Android Malware Detection for IoT Services. 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), 61-66. IEEE. |
Wu, Zhiqiang; Chen, Xin; Lee, Scott Uk-Jin; (2019). Identifying Latent Android Malware from Application’s Description using LSTM. proc. of International Conference on Information, System and Convergence Applications, 40-42 |
Xiao, Jingxu; Xu, Kaiyong; Duan, Jialiang; (2019). Malicious Android Application Detection Based on Composite Features. Proceedings of the 3rd International Conference on Computer Science and Application Engineering, 1-6 |
Xiaofeng, Lu; Fangshuo, Jiang; Xiao, Zhou; Shengwei, Yi; Jing, Sha; Lio, Pietro; (2019). ASSCA: API sequence and statistics features combined architecture for malware detection. Computer Networks, 157, 99-111. Elsevier. |
Xu, Guangquan; Wang, Weizhe; Jiao, Litao; Li, Xiaotong; Liang, Kaitai; Zheng, Xi; Lian, Wenjuan; Xian, Hequn; Gao, Honghao; (2019). SoProtector: safeguard privacy for native SO files in evolving mobile IoT applications. IEEE Internet of Things Journal, 7(4), 2539-2552. IEEE. |
Xue, Nan; Luo, Xiong; Gao, Yang; Wang, Weiping; Wang, Long; Huang, Chao; Zhao, Wenbing; (2019). Kernel mixture correntropy conjugate gradient algorithm for time series prediction. Entropy, 21(8), 785. Multidisciplinary Digital Publishing Institute. |
Yang, Wenzhuo; Lam, Kwok-Yan; (2019). Automated Cyber Threat Intelligence Reports Classification for Early Warning of Cyber Attacks in Next Generation SOC. International Conference on Information and Communications Security, 145-164. Springer. |
Yang, Yufei; Luo, Wenbo; Pei, Yu; Pan, Minxue; Zhang, Tian; (2019). Execution enhanced static detection of Android privacy leakage hidden by dynamic class loading. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), 1, 149-158. IEEE. |
Yassin, Warusia; Abdullah, Raihana; Abdollah, Mohd Faizal; Mas' ud, Zaki; Bakhari, Farah Adeliena; (2019). An IoT Botnet Prediction Model Using Frequency based Dependency Graph: Proof-of-concept. Proceedings of the 2019 7th International Conference on Information Technology: IoT and Smart City, 344-352 |
Yousaf, M Shahid; Durad, Muhammad Hanif; Ismail, Maleeha; (2019). Implementation of Portable Executable File Analysis Framework (PEFAF). 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 671-675. IEEE. |
Yu, Donghao; Li, Tao; Zhang, Yancheng; (2019). A Model Library Method of Android Malware Detection for Population. 2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS), 811-815. IEEE. |
Yu, Min; Jiang, Jianguo; Li, Gang; Li, Jingyuan; Lou, Chenzhe; Liu, Chao; Huang, Weiqing; Wang, Yuanzhuo; (2019). A Unified Malicious Documents Detection Model Based on Two Layers of Abstraction. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2317-2323. IEEE. |
Yu, Min; Jiang, Jianguo; Li, Gang; Lou, Chenzhe; Liu, Yunzheng; Liu, Chao; Huang, Weiqing; (2019). Malicious documents detection for business process management based on multi-layer abstract model. Future Generation Computer Systems, 99, 517-526. Elsevier. |
Yuan, Wei; Jiang, Yuan; Li, Heng; Cai, Minghui; (2019). A Lightweight On-Device Detection Method for Android Malware. IEEE Transactions on Systems, Man, and Cybernetics: Systems. IEEE. |
Zelinka, Ivan; Amer, Eslam; (2019). An Ensemble-Based Malware Detection Model Using Minimum Feature Set. Mendel, 25(2), 1-10 |
Zhang, Hao; Zhang, Wenjun; Lv, Zhihan; Sangaiah, Arun Kumar; Huang, Tao; Chilamkurti, Naveen; (2019). MALDC: a depth detection method for malware based on behavior chains. World Wide Web, 1-20. Springer. |
Zhang, Rongjunchen; Chen, Xiao; Wen, Sheng; Zheng, James; (2019). Who Activated My Voice Assistant? A Stealthy Attack on Android Phones Without Users’ Awareness. International Conference on Machine Learning for Cyber Security, 378-396. Springer. |
Zhang, Yanxin; Sui, Yulei; Pan, Shirui; Zheng, Zheng; Ning, Baodi; Tsang, Ivor; Zhou, Wanlei; (2019). Familial clustering For weakly-labeled Android malware using hybrid representation learning. IEEE Transactions on Information Forensics and Security, 15, 3401-3414. IEEE. |
Zhang, Ziyi; Cai, Haipeng; (2019). A look into developer intentions for app compatibility in Android. 2019 IEEE/ACM 6th International Conference on Mobile Software Engineering and Systems (MOBILESoft), 40-44. IEEE. |
Zhao, Chunhui; Wang, Chundong; Zheng, Wenbai; (2019). Android malware detection based on sensitive permissions and APIs. International Conference on Security and Privacy in New Computing Environments, 105-113. Springer. |
Zhdanov, Alexander; (2019). Generation of Static YARA-Signatures Using Genetic Algorithm. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), 220-228. IEEE. |
Zhiwu, XU; Ren, Kerong; Song, Fu; (2019). Android malware family classification and characterization using CFG and DFG. 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE), 49-56. IEEE. |
Zhong, Wei; Gu, Feng; (2019). A multi-level deep learning system for malware detection. Expert Systems with Applications, 133, 151-162. Elsevier. |
Zhou, Qingguo; Feng, Fang; Shen, Zebang; Zhou, Rui; Hsieh, Meng-Yen; Li, Kuan-Ching; (2019). A novel approach for mobile malware classification and detection in Android systems. Multimedia Tools and Applications, 78(3), 3529-3552. Springer. |
Zhou, Xin; Pang, Jianmin; (2019). Expdf: Exploits Detection System Based on Machine-Learning. International Journal of Computational Intelligence Systems, 12(2), 1019-1028. Atlantis Press. |
Zhu, Dali; Ma, Yuchen; Xi, Tong; Zhang, Yiming; (2019). FSNet: Android Malware Detection with Only One Feature. 2019 IEEE Symposium on Computers and Communications (ISCC), 1-6. IEEE. |
Zhu, Dali; Xi, Tong; (2019). Permission-based feature scaling method for lightweight android malware detection. International Conference on Knowledge Science, Engineering and Management, 714-725. Springer. |
Zhu, Dali; Xi, Tong; Jing, Pengfei; Wu, Di; Xia, Qing; Zhang, Yiming; (2019). A Transparent and Multimodal Malware Detection Method for Android Apps. Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 51-60 |
Zou, Kewen; Luo, Xi; Liu, Pengfei; Wang, Weiping; Wang, Haodong; (2019). ByteDroid: Android Malware Detection Using Deep Learning on Bytecode Sequences. Chinese Conference on Trusted Computing and Information Security, 159-176. Springer. |
de Carnavalet, Xavier de Carné; Mannan, Mohammad; (2019). Privacy and Security Risks of" Not-a-Virus" Bundled Adware: The Wajam Case. arXiv preprint arXiv:1905.05224 |
Čeponis, Dainius; Goranin, Nikolaj; (2019). Evaluation of Deep Learning Methods Efficiency for Malicious and Benign System Calls Classification on the AWSCTD. Security and Communication Networks, 2019. Hindawi. |
Ντουραμπάς, Απόστολος; (2019). Συναλλαγές με έξυπνες συσκευές: κακόβουλο λογισμικό και ανίχνευση εισβολών. |
刘倩; 韩斌; (2019). Android 平台下的基于应用分类和敏感权限挖掘的恶意应用检测方法研究. 计算机与数字工程, 47(6), 1446-1451, 1481 |
刘文翰; (2019). 基于极限学习机的恶意代码家族分类技术的研究与实现. . 北京邮电大学. |
卢晓荣; 刘钊远; (2019). 基于 AndroidAPI 调用的恶意软件行为检测方法研究. 计算机与数字工程, 47(3), 710-715 |
姜煜; (2019). Android 恶意软件的静动结合检测方法研究. . 哈尔滨工程大学. |
崔艳鹏; 颜波; 胡建伟; (2019). 基于抽象 API 调用序列的 Android 恶意软件检测方法. 计算机应用与软件, 36, 9 |
张雨薇; (2019). 基于内存镜像分析的恶意进程识别技术的研究. . 沈阳理工大学. |
张雪涛; 孙蒙; 王金双; (2019). 基于操作码的安卓恶意代码多粒度快速检测方法. 网络与信息安全学报, 5(6), 85-94 |
李秀; 陆南; (2019). 基于数据挖掘的 Android 恶意应用检测方法的研究. 计算机与数字工程, 47(12), 3089-3094 |
王蕾; 周卿; 何冬杰; 李炼; 冯晓兵; (2019). 面向 Android 应用隐私泄露检测的多源污点分析技术. Journal of Software, 2, 211-230 |
谢念念; 曾凡平; 周明松; 秦晓霞; 吕成成; 陈钊; (2019). 多维敏感特征的 Android 恶意应用检测. 计算机科学, 46(2), 95-101 |
金逸灵; (2019). 基于卷积神经网络的容器中恶意软件检测. 现代计算机(33), 11-14 |
韩金; 单征; 赵炳麟; 孙文杰; (2019). 基于软件基因的 Android 恶意软件检测与分类. 计算机应用研究, 6 |
黄迎春; 张雨薇; (2019). 一种改进的加权贝叶斯恶意软件识别方法. 沈阳理工大学学报(1), 43-47 |
김경한; 이슬기; 김병익; 박순태; (2019). OSINT 기반의 활용 가능한 사이버 위협 인텔리전스 생성을 위한 위협 정보 수집 시스템. 정보보호학회지, 29(6), 75-80 |
김수정; 하지희; 오수현; 이태진; (2019). 정적 분석 기반 기계학습 기법을 활용한 악성코드 식별 시스템 연구. 정보보호학회논문지, 29(4), 775-784 |
이현종; 어성율; 황두성; (2019). 대용량 악성코드의 특징 추출 가속화를 위한 분산 처리시스템 설계 및 구현. 정보처리학회논문지/컴퓨터 및 통신 시스템 제, 8(2), 2 |
이현종; 어성율; 황두성; (2019). 악성코드 패밀리 분류를 위한 API 특징 기반 앙상블 모델 학습. 정보보호학회논문지, 29(3), 531-539 |
전덕조; 박동규; (2019). 머신러닝을 활용한 실시간 리눅스 악성파일 탐지. 한국정보기술학회논문지, 17(7), 111-122 |
황준호; 이태진; (2019). 정적 분석과 앙상블 기반의 리눅스 악성코드 분류 연구. 정보보호학회논문지, 29(6), 1327-1337 |
• 2018 • |
Abbas, Saad Abdulhussein; Ariffin, Khairul Akram Zainol; (2018). A Framework For Malware Detection Using Blacklist-Based Method. |
Abraham, Brendan; Mandya, Abhijith; Bapat, Rohan; Alali, Fatma; Brown, Don E; Veeraraghavan, Malathi; (2018). A comparison of machine learning approaches to detect botnet traffic. 2018 International Joint Conference on Neural Networks (IJCNN), 1-8. IEEE. |
Abro, Fauzia Idrees; (2018). Investigating Android permissions and intents for malware detection. . City, Universtiy of London. |
Afonso, Vitor; Kalysch, Anatoli; Müller, Tilo; Oliveira, Daniela; Grégio, André; de Geus, Paulo Lício; (2018). Lumus: Dynamically uncovering evasive Android applications. International Conference on Information Security, 47-66. Springer. |
Ahn, Tae-Hyun; Park, Jae-Gyun; Kwon, Young-Man; (2018). A study on performance of ML algorithms and feature extraction to detect malware. The Journal of The Institute of Internet, Broadcasting and Communication, 18(1), 211-216. The Institute of Internet, Broadcasting and Communication. |
Akbanov, Maxat; Vassilakis, Vassilios G; Moscholios, Ioannis D; Logothetis, Michael D; (2018). Static and dynamic analysis of WannaCry ransmware. Proc. IEICE Inform. and Commun. Technol. Forum ICTF, 2018 |
Akbi, Denar Regata; Rosyadi, Arini R; (2018). Analisis Klasterisasi Malware: Evaluasi Data Training Dalam Proses Klasifikasi Malware. Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, 2(2), 58-66 |
Al-Dujaili, Abdullah; Huang, Alex; Hemberg, Erik; O’Reilly, Una-May; (2018). Adversarial deep learning for robust detection of binary encoded malware. 2018 IEEE Security and Privacy Workshops (SPW), 76-82. IEEE. |
Al-rimy, Bander Ali Saleh; Maarof, Mohd Aizaini; Prasetyo, Yuli Adam; Shaid, Syed Zainudeen Mohd; Ariffin, Asmawi Fadillah Mohd; (2018). Zero-day aware decision fusion-based model for crypto-ransomware early detection. International Journal of Integrated Engineering, 10(6) |
Al-rimy, Bander Ali Saleh; Maarof, Mohd Aizaini; Shaid, Syed Zainudeen Mohd; (2018). Redundancy coefficient gradual up-weighting-based mutual information feature selection technique for crypto-ransomware early detection. arXiv preprint arXiv:1807.09574 |
Alam, Manaar; Mukhopadhyay, Debdeep; Kadiyala, Sai Praveen; Lam, Siew Kei; Srikanthan, Thambipillai; (2018). Side-Channel Assisted Malware Classifier with Gradient Descent Correction for Embedded Platforms.. PROOFS@ CHES, 1-15 |
Alrabaee, Saed; Shirani, Paria; Wang, Lingyu; Debbabi, Mourad; (2018). Fossil: a resilient and efficient system for identifying foss functions in malware binaries. ACM Transactions on Privacy and Security (TOPS), 21(2), 1-34. ACM New York, NY, USA. |
Alsulami, Bander; Mancoridis, Spiros; (2018). Behavioral malware classification using convolutional recurrent neural networks. 2018 13th International Conference on Malicious and Unwanted Software (MALWARE), 103-111. IEEE. |
Amati, Giambattista; Angelini, Simone; Carli, Anna Caterina; Majorani, Carlo; Riccardi, Alessandro; (2018). The Malware Text Collection and Mining Project.. IIR |
An, Ni; (2018). Performance Analysis of Statistical Anomaly Detection Algorithms. . Drexel University. |
An, Ni; Duff, Alexander; Noorani, Mahshid; Weber, Steven; Mancoridis, Spiros; (2018). Malware anomaly detection on virtual assistants. 2018 13th International Conference on Malicious and Unwanted Software (MALWARE), 124-131. IEEE. |
Anderson, Hyrum S; Kharkar, Anant; Filar, Bobby; Evans, David; Roth, Phil; (2018). Learning to evade static PE machine learning malware models via reinforcement learning. arXiv preprint arXiv:1801.08917 |
Anderson, Hyrum S; Roth, Phil; (2018). Ember: an open dataset for training static pe malware machine learning models. arXiv preprint arXiv:1804.04637 |
Argyriou, Marios; Dragoni, Nicola; Spognardi, Angelo; (2018). Analysis and evaluation of SafeDroid v2. 0, a framework for detecting malicious Android applications. Security and Communication Networks, 2018. Hindawi. |
Arshad, Saba; Shah, Munam A; Wahid, Abdul; Mehmood, Amjad; Song, Houbing; Yu, Hongnian; (2018). SAMADroid: a novel 3-level hybrid malware detection model for android operating system. IEEE Access, 6, 4321-4339. IEEE. |
Azizi, Abdelmalek; (2018). Classification of Ransomware Based on Artificial Neural Networks. Information Systems and Technologies to Support Learning: Proceedings of EMENA-ISTL 2018, 111, 384. Springer. |
Babenko, Ludmila; Kirillov, Alexey; (2018). Development of method for malware classification based on statistical methods and an extended set of system calls data. Proceedings of the 11th International Conference on Security of Information and Networks, 1-6 |
Bapat, Rohan; Mandya, Abhijith; Liu, Xinyang; Abraham, Brendan; Brown, Donald E; Kang, Hyojung; Veeraraghavan, Malathi; (2018). Identifying malicious botnet traffic using logistic regression. 2018 Systems and Information Engineering Design Symposium (SIEDS), 266-271. IEEE. |
Basile, Cataldo; Platania, Dario; (2018). Sistema di apprendimento automatico per il rilevamento di canali di comunicazione nascosti utilizzati dal malware. |
Baychev, Yanko; Bilge, Leyla; (2018). Spearphishing Malware: Do we really know the unknown?. International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 46-66. Springer. |
Bezerra, Vitor Hugo; da Costa, Victor G Turrisi; Martins, Ricardo Augusto; Junior, Sylvio Barbon; Miani, Rodrigo Sanches; Zarpelao, Bruno Bogaz; (2018). Providing IoT host-based datasets for intrusion detection research∗. Anais Principais do XVIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais, 15-28. SBC. |
Bhattacharya, Abhishek; Goswami, Radha Tamal; (2018). Community Based Feature Selection Method for Detection of Android Malware. Journal of Global Information Management (JGIM), 26(3), 54-77. IGI Global. |
Blasco, Jorge; Chen, Thomas M; (2018). Automated generation of colluding apps for experimental research. Journal of Computer Virology and Hacking Techniques, 14(2), 127-138. Springer Paris. |
Botacin, Marcus Felipe; de Geus, Paulo Lício; Grégio, André Ricardo Abed; (2018). The other guys: automated analysis of marginalized malware. Journal of Computer Virology and Hacking Techniques, 14(1), 87-98. Springer Paris. |
Bottazzi, Giovanni; Italiano, Giuseppe; Spera, Domenico; (2018). Preventing ransomware attacks through file system filter drivers. |
Cai, Haipeng; Meng, Na; Ryder, Barbara; Yao, Daphne; (2018). Droidcat: Effective android malware detection and categorization via app-level profiling. IEEE Transactions on Information Forensics and Security, 14(6), 1455-1470. IEEE. |
Carlin, Domhnall; O'Kane, Philip; Sezer, Sakir; (2018). Dynamic Analysis of Ran-somware using Opcodes and Opcode Categories.. IJCSA, 3(1), 84-97 |
Carlin, Domhnall; O'Kane, Philip; Sezer, Sakir; (2018). Dynamic Opcode Analysis of Ransomware. 2018 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), 1-4. IEEE. |
Carlin, Domhnall; O’kane, Philip; Sezer, Sakir; Burgess, Jonah; (2018). Detecting cryptomining using dynamic analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST), 1-6. IEEE. |
Cavalli, Ana R; Ortiz, Antonio M; Ouffoué, Georges; Sanchez, Cesar A; Zaïdi, Fatiha; (2018). Design of a secure shield for internet and web-based services using software reflection. International Conference on Web Services, 472-486. Springer. |
Ceponis, Dainius; Goranin, Nikolaj; (2018). Towards a Robust Method of Dataset Generation of Malicious Activity on a Windows-Based Operating System for Anomaly-Based HIDS Training.. Doctoral Consortium/Forum@ DB&IS, 23-32 |
Chandramohan, Mahinthan; (2018). Scalable analysis for malware and vulnerability detection in binaries. |
Chau, Ngoc-Tu; Jung, Souhwan; (2018). Dynamic analysis with Android container: Challenges and opportunities. Digital Investigation, 27, 38-46. Elsevier. |
Chen, Xiupeng; Mu, Rongzeng; Yan, Yuepeng; (2018). Automated identification of callbacks in Android framework using machine learning techniques. International Journal of Embedded Systems, 10(4), 301-312. Inderscience Publishers (IEL). |
Cheng, Binlin; Li, Pengwei; (2018). BareUnpack: Generic Unpacking on the Bare-Metal Operating System. IEICE TRANSACTIONS on Information and Systems, 101(12), 3083-3091. The Institute of Electronics, Information and Communication Engineers. |
Cheng, Binlin; Ming, Jiang; Fu, Jianmin; Peng, Guojun; Chen, Ting; Zhang, Xiaosong; Marion, Jean-Yves; (2018). Towards paving the way for large-scale windows malware analysis: Generic binary unpacking with orders-of-magnitude performance boost. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 395-411 |
Cho, Hyei Sun; Lee, Seul Gi; Kim, Nak Hyun; Kim, Byung Ik; Lee, Tae Jin; (2018). Method and apparatus for calculating risk of cyber attack. . Google Patents. |
Cho, Hyei Sun; Lee, Seul Gi; Kim, Nak Hyun; Kim, Byung Ik; Lee, Tae Jin; (2018). Method and apparatus for collecting cyber incident information. . Google Patents. |
Cronin, Patrick; Yang, Chengmo; (2018). Lowering the barrier to online malware detection through low frequency sampling of HPCs. 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 177-180. IEEE. |
Cui, Yan; Xue, Jingfeng; Wang, Yong; Liu, Zhenyan; Zhang, Ji; (2018). Research of Snort rule extension and APT detection based on APT network behavior analysis. Chinese Conference on Trusted Computing and Information Security, 51-64. Springer. |
Dam, Khanh Huu The; Touili, Tayssir; (2018). Learning malware using generalized graph kernels. Proceedings of the 13th International Conference on Availability, Reliability and Security, 1-6 |
Dam, Khanh Huu The; Touili, Tayssir; (2018). Precise Extraction of Malicious Behaviors. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), 1, 229-234. IEEE. |
Dara, Sashank; Zargar, Saman Taghavi; Muralidhara, VN; (2018). Towards privacy preserving threat intelligence. Journal of information security and applications, 38, 28-39. Elsevier. |
Darshan, SL Shiva; Jaidhar, CD; (2018). Performance evaluation of filter-based feature selection techniques in classifying portable executable files. Procedia Computer Science, 125, 346-356. Elsevier. |
De Paola, Alessandra; Favaloro, Salvatore; Gaglio, Salvatore; Re, Giuseppe Lo; Morana, Marco; (2018). Malware Detection through Low-level Features and Stacked Denoising Autoencoders.. ITASEC |
De Paola, Alessandra; Gaglio, Salvatore; Re, Giuseppe Lo; Morana, Marco; (2018). A hybrid system for malware detection on big data. IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 45-50. IEEE. |
Dong, Shuaike; Li, Menghao; Diao, Wenrui; Liu, Xiangyu; Liu, Jian; Li, Zhou; Xu, Fenghao; Chen, Kai; Wang, Xiaofeng; Zhang, Kehuan; (2018). Understanding Android obfuscation techniques: A large-scale investigation in the wild. International Conference on Security and Privacy in Communication Systems, 172-192. Springer. |
Du, Jinran; Chen, Huajun; Zhon, Weijie; Liu, Zhen; Xu, Aidong; (2018). A Dynamic and Static Combined Android Malicious Code Detection Model based on SVM. 2018 5th International Conference on Systems and Informatics (ICSAI), 801-675. IEEE. |
Elish, Karim O; Cai, Haipeng; Barton, Daniel; Yao, Danfeng; Ryder, Barbara G; (2018). Identifying mobile inter-app communication risks. IEEE Transactions on Mobile Computing, 19(1), 90-102. IEEE. |
Elsabagh, Mohamed; Johnson, Ryan; Stavrou, Angelos; (2018). Resilient and scalable cloned app detection using forced execution and compression trees. 2018 IEEE Conference on Dependable and Secure Computing (DSC), 1-8. IEEE. |
Enfinger, Kerry Wayne; (2018). System and method for detecting malware. . Google Patents. |
Fan, Ming; Liu, Jun; Luo, Xiapu; Chen, Kai; Tian, Zhenzhou; Zheng, Qinghua; Liu, Ting; (2018). Android malware familial classification and representative sample selection via frequent subgraph analysis. IEEE Transactions on Information Forensics and Security, 13(8), 1890-1905. IEEE. |
Fournier, Arthur; (2018). Détection de programmes malveillants dédiée aux appareils mobiles. . École Polytechnique de Montréal. |
Galante, Lucas; Botacin, Marcus; Grégio, André; de Geus, Paulo Lício; (2018). Malicious linux binaries: A landscape. Anais Estendidos do XVIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais, 213-222. SBC. |
Garcia, Joshua; Hammad, Mahmoud; Malek, Sam; (2018). Lightweight, obfuscation-resilient detection and family identification of android malware. ACM Transactions on Software Engineering and Methodology (TOSEM), 26(3), 1-29. ACM New York, NY, USA. |
Gomez Ramirez, A; Bilanovic, D; Lara, C; Kebschull, U; Betev, L; (2018). arXiv: Arhuaco: Deep Learning and Isolation Based Security for Distributed High-Throughput Computing. |
Grant, Liam; Parkinson, Simon; (2018). Identifying file interaction patterns in ransomware behaviour. Guide to Vulnerability Analysis for Computer Networks and Systems, 317-335. Springer. |
Grini, Lars Strande; Shalaginov, Andrii; Franke, Katrin; (2018). Study of soft computing methods for large-scale multinomial malware types and families detection. Recent Developments and the New Direction in Soft-Computing Foundations and Applications, 337-350. Springer, Cham. |
Guevara, Richard Paul Rivera; (2018). Tools for the detection and analysis of potentially unwanted programs. . Universidad Politécnica de Madrid. |
Gupta, Deepak; Rani, Rinkle; (2018). Big Data Framework for Zero-Day Malware Detection. Cybernetics and Systems, 49(2), 103-121. Taylor & Francis. |
Gupta, Mugdha; (2018). Early Stage Malware Classification using Behavior Analysis. . INDIAN INSTITUTE OF TECHNOLOGY KANPUR. |
Hammad, Mahmoud; Garcia, Joshua; Malek, Sam; (2018). A large-scale empirical study on the effects of code obfuscations on Android apps and anti-malware products. Proceedings of the 40th International Conference on Software Engineering, 421-431 |
Hansen, Joachim; Porter, Kyle; Shalaginov, Andrii; Franke, Katrin; (2018). Comparing open source search engine functionality, efficiency and effectiveness with respect to digital forensic search. . PKP Publications. |
Harikrishnan, NB; Soman, KP; (2018). Detecting ransomware using GURLS. 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC), 1-6. IEEE. |
Hassan, Nihad A; Hijazi, Rami; (2018). Introduction To Online Threats and Countermeasures. Open Source Intelligence Methods and Tools, 21-94. Springer. |
Hassan, Nihad A; Hijazi, Rami; (2018). Open Source Intelligence Methods and Tools. . Springer. |
He, Jingxuan; Ivanov, Pesho; Tsankov, Petar; Raychev, Veselin; Vechev, Martin; (2018). Debin: Predicting debug information in stripped binaries. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 1667-1680 |
He, Qi; Chen, Zhenxiang; Yan, Anli; Peng, Lizhi; Zhao, Chuan; Shi, YuLiang; (2018). TrafficPSSF: A Fast and An Effective Malware Detection Under Online and Offline. 2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), 14-19. IEEE. |
He, Xincheng; Xu, Lei; Cha, Chunliu; (2018). Malicious JavaScript code detection based on hybrid analysis. 2018 25th Asia-Pacific Software Engineering Conference (APSEC), 365-374. IEEE. |
Hong, Sanghyun; Nicolae, Alina; Srivastava, Abhinav; Dumitraş, Tudor; (2018). Peek-a-boo: Inferring program behaviors in a virtualized infrastructure without introspection. Computers & Security, 79, 190-207. Elsevier. |
Huang, Alex Yangyang; (2018). Towards robust malware detection. . Massachusetts Institute of Technology. |
Huang, Alex; Al-Dujaili, Abdullah; Hemberg, Erik; O'Reilly, Una-May; (2018). On visual hallmarks of robustness to adversarial malware. arXiv preprint arXiv:1805.03553 |
Irolla, Paul; (2018). Formalization of Neural Network Applications to Secure 3D Mobile Applications. |
Jan, Salman; Ali, Toqeer; Alzahrani, Ali; Musa, Shahrulniza; (2018). Deep Convolutional Generative Adversarial Networks for Intent-based Dynamic Behavior Capture. International Journal of Engineering & Technology, 7(4.29), 101-103 |
Javaheri, Danial; Hosseinzadeh, Mehdi; (2018). A framework for recognition and confronting of obfuscated malwares based on memory dumping and filter drivers. Wireless Personal Communications, 98(1), 119-137. Springer US. |
Javorović, Domagoj; Žagar, Marinko; (2018). ADVANCED STATIC ANALYSIS OF MALICIOUS CODE. Polytechnic and design, 6(4), 213-2019. Tehničko veleučilište u Zagrebu. |
Javorović, Domagoj; Žagar, Marinko; (2018). Napredna statička analiza zlonamjernog koda. Politehnika i dizajn, 6(04), 213-219 |
Jiang, Haodi; Turki, Turki; Wang, Jason TL; (2018). DLGraph: Malware detection using deep learning and graph embedding. 2018 17th IEEE international conference on machine learning and applications (ICMLA), 1029-1033. IEEE. |
Jiang, Jianguo; Li, Song; Yu, Min; Chen, Kai; Liu, Chao; Huang, Weiqing; Li, Gang; (2018). MRDroid: A multi-act classification model for Android malware risk assessment. 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 64-72. IEEE. |
Jin, Yangxu; Liu, Ting; He, Ancheng; Qu, Yu; Chi, Jianlei; (2018). Android malware detector exploiting convolutional neural network and adaptive classifier selection. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), 1, 833-834. IEEE. |
Jordan, Alexander; Gauthier, François; Hassanshahi, Behnaz; Zhao, David; (2018). SAFE-PDF: Robust Detection of JavaScript PDF Malware Using Abstract Interpretation. arXiv preprint arXiv:1810.12490 |
Kalachanis, Athanasios; (2018). Machine learning in the field of information security. . Πανεπιστήμιο Πειραιώς. |
Kalysch, Anatoli; Milisterfer, Oskar; Protsenko, Mykolai; Müller, Tilo; (2018). Tackling Androids Native Library Malware with Robust, Efficient and Accurate Similarity Measures. Proceedings of the 13th International Conference on Availability, Reliability and Security, 1-10 |
Kan, Zeliang; Wang, Haoyu; Xu, Guoai; Guo, Yao; Chen, Xiangqun; (2018). Towards light-weight deep learning based malware detection. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), 1, 600-609. IEEE. |
Kang, Ho-Seok; Kim, Sung-Ryul; (2018). Offline Based Ransomware Detection and Analysis Method using Dynamic API Calls Flow Graph. Journal of Digital Contents Society, 19(2), 363-370. Digital Contents Society. |
Karbab, ElMouatez Billah; Debbabi, Mouarad; (2018). Automatic investigation framework for android malware cyber-infrastructures. arXiv preprint arXiv:1806.08893 |
Karbab, ElMouatez Billah; Debbabi, Mourad; (2018). ToGather: automatic investigation of android malware cyber-infrastructures. Proceedings of the 13th International Conference on Availability, Reliability and Security, 1-10 |
Karbab, ElMouatez Billah; Debbabi, Mourad; Derhab, Abdelouahid; Mouheb, Djedjiga; (2018). MalDozer: Automatic framework for android malware detection using deep learning. Digital Investigation, 24, S48-S59. Elsevier. |
Kim, Chan Woo; (2018). Ntmaldetect: A machine learning approach to malware detection using native api system calls. arXiv preprint arXiv:1802.05412 |
Kim, Danny; Mirsky, Daniel; Majlesi-Kupaei, Amir; Barua, Rajeev; (2018). A Hybrid Static Tool to Increase the Usability and Scalability of Dynamic Detection of Malware. 2018 13th International Conference on Malicious and Unwanted Software (MALWARE), 115-123. IEEE. |
Kim, Hyunki; Cho, Taejoo; Ahn, Gail-Joon; Yi, Jeong Hyun; (2018). Risk assessment of mobile applications based on machine learned malware dataset. Multimedia Tools and Applications, 77(4), 5027-5042. Springer US. |
Kim, Kwangjo; Aminanto, Muhamad Erza; Tanuwidjaja, Harry Chandra; (2018). Network Intrusion Detection Using Deep Learning: A Feature Learning Approach. . Springer. |
Kim, Nakhyun; Lee, Seulgi; Cho, Hyeisun; Kim, Byun-Ik; Jun, MoonSeog; (2018). Design of a cyber threat information collection system for cyber attack correlation. 2018 International Conference on Platform Technology and Service (PlatCon), 1-6. IEEE. |
Kim, Samuel; (2018). PE header analysis for malware detection. |
Kim, Sangwoo; Hong, Seokmyung; Oh, Jaesang; Lee, Heejo; (2018). Obfuscated VBA macro detection using machine learning. 2018 48th annual ieee/ifip international conference on dependable systems and networks (dsn), 490-501. IEEE. |
Kim, TaeGuen; Kang, BooJoong; Rho, Mina; Sezer, Sakir; Im, Eul Gyu; (2018). A multimodal deep learning method for android malware detection using various features. IEEE Transactions on Information Forensics and Security, 14(3), 773-788. IEEE. |
Kirubavathi, G; Anitha, R; (2018). Structural analysis and detection of android botnets using machine learning techniques. International Journal of Information Security, 17(2), 153-167. Springer Berlin Heidelberg. |
Kolosnjaji, Bojan; Demontis, Ambra; Biggio, Battista; Maiorca, Davide; Giacinto, Giorgio; Eckert, Claudia; Roli, Fabio; (2018). Adversarial malware binaries: Evading deep learning for malware detection in executables. 2018 26th European Signal Processing Conference (EUSIPCO), 533-537. IEEE. |
Korec, Bc Martin; (2018). Malware detection based on periodic behavior. |
Kreuk, Felix; Barak, Assi; Aviv-Reuven, Shir; Baruch, Moran; Pinkas, Benny; Keshet, Joseph; (2018). Deceiving end-to-end deep learning malware detectors using adversarial examples. arXiv preprint arXiv:1802.04528 |
Kulkarni, Keyur; (2018). Android Malware Detection through Permission and App Component Analysis using Machine Learning Algorithms. . University of Toledo. |
Kumara, Ajay; Jaidhar, CD; (2018). Automated multi-level malware detection system based on reconstructed semantic view of executables using machine learning techniques at VMM. Future Generation Computer Systems, 79, 431-446. North-Holland. |
Kuo, Wen-Chung; Lin, Yu-Pin; (2018). Malware detection method based on CNN. International Computer Symposium, 608-617. Springer. |
Latah, Majd; (2018). When deep learning meets security. arXiv preprint arXiv:1807.04739 |
Lee, Seul Gi; Cho, Hyei Sun; Kim, Nak Hyun; Kim, Byung Ik; Lee, Tae Jin; (2018). Method for generating graph database of incident resources and apparatus thereof. . Google Patents. |
Lee, Suhyeon; Kim, Huy Kang; Kim, Kyounggon; (2018). Spoil the Hunting: An Approach to Avoiding Ransomware Attacks. |
Li, Jingwei; Wu, Bozhi; Wen, Weiping; (2018). Android Malware Detection Method Based on Frequent Pattern and Weighted Naive Bayes. China Cyber Security Annual Conference, 36-51. Springer. |
Li, Jinku; Ye, Yangtian; Zhou, Yajin; Ma, Jianfeng; (2018). CodeTracker: a lightweight approach to track and protect authorization codes in SMS messages. IEEE Access, 6, 10107-10120. IEEE. |
Li, Qun; Chen, Zhenxiang; Yan, Qiben; Wang, Shanshan; Ma, Kun; Shi, Yuliang; Cui, Lizhen; (2018). MulAV: Multilevel and Explainable Detection of Android Malware with Data Fusion. International Conference on Algorithms and Architectures for Parallel Processing, 166-177. Springer. |
Li, Xu; Wang, Guojun; Ali, Saqib; He, QiLin; (2018). Android Malware Detection Using Category-Based Permission Vectors. International Conference on Algorithms and Architectures for Parallel Processing, 399-414. Springer. |
Li, Yuping; (2018). Similarity Based Large Scale Malware Analysis: Techniques and Implications. |
Li, Zhiqiang; Sun, Jun; Yan, Qiben; Srisa-an, Witawas; Bachala, Shakthi; (2018). Grandroid: Graph-based detection of malicious network behaviors in android applications. International Conference on Security and Privacy in Communication Systems, 264-280. Springer. |
Liang, Guanghui; Pang, Jianmin; Shan, Zheng; Yang, Runqing; Chen, Yihang; (2018). Automatic benchmark generation framework for malware detection. Security and Communication Networks, 2018. Hindawi. |
Liu, Anran; Chen, Zhenxiang; Wang, Shanshan; Peng, Lizhi; Zhao, Chuan; Shi, Yuliang; (2018). A fast and effective detection of mobile malware behavior using network traffic. International Conference on Algorithms and Architectures for Parallel Processing, 109-120. Springer. |
Liu, Chao; Li, Jianan; Yu, Min; Li, Gang; Luo, Bo; Chen, Kai; Jiang, Jianguo; Huang, Weiqing; (2018). URefFlow: A Unified Android Malware Detection Model Based on Reflective Calls. 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), 1-7. IEEE. |
Liu, Chao; Li, Jianan; Yu, Min; Luo, Bo; Li, Song; Chen, Kai; Huang, Weiqing; Lv, Bin; (2018). FGFDect: A Fine-Grained Features Classification Model for Android Malware Detection. International Conference on Security and Privacy in Communication Systems, 281-293. Springer. |
Liu, Chao; Xia, Bin; Yu, Min; Liu, Yunzheng; (2018). PSDEM: A Feasible De-Obfuscation Method for Malicious PowerShell Detection. 2018 IEEE Symposium on Computers and Communications (ISCC), 825-831. IEEE. |
Liu, Ming; Xue, Zhi; Xu, Xianghua; Zhong, Changmin; Chen, Jinjun; (2018). Host-based intrusion detection system with system calls: Review and future trends. ACM Computing Surveys (CSUR), 51(5), 1-36. ACM New York, NY, USA. |
Liu, Xiaojian; Dong, Xiaofeng; Lei, Qian; (2018). Android malware detection based on multi-features. Proceedings of the 8th International Conference on Communication and Network Security, 69-73 |
Liu, Yu; Guo, Kai; Huang, Xiangdong; Zhou, Zhou; Zhang, Yichi; (2018). Detecting android malwares with high-efficient hybrid analyzing methods. Mobile Information Systems, 2018. Hindawi. |
Liu, Yu; Zhang, Liqiang; Huang, Xiangdong; (2018). Using G Features to Improve the Efficiency of Function Call Graph Based Android Malware Detection. Wireless Personal Communications, 103(4), 2947-2955. Springer. |
Lu, Tianliang; Hou, Su; (2018). A Two-Layered Malware Detection Model Based on Permission for Android. 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET), 239-243. IEEE. |
López, Christian Camilo Urcuqui; Villarreal, Jhoan Steven Delgado; Belalcazar, Andres Felipe Perez; Cadavid, Andres Navarro; Cely, Javier Gustavo Diaz; (2018). Features to Detect Android Malware. 2018 IEEE Colombian Conference on Communications and Computing (COLCOM), 1-6. IEEE. |
Machiry, Aravind; Redini, Nilo; Gustafson, Eric; Fratantonio, Yanick; Choe, Yung Ryn; Kruegel, Christopher; Vigna, Giovanni; (2018). Using loops for malware classification resilient to feature-unaware perturbations. Proceedings of the 34th Annual Computer Security Applications Conference, 112-123 |
Masabo, Emmanuel; Kaawaase, Kyanda Swaib; Sansa-Otim, Julianne; (2018). Big data: deep learning for detecting malware. 2018 IEEE/ACM Symposium on Software Engineering in Africa (SEiA), 20-26. IEEE. |
Masabo, Emmanuel; Kaawaase, Kyanda Swaib; Sansa-Otim, Julianne; Ngubiri, John; Hanyurwimfura, Damien; (2018). A state of the art survey on polymorphic malware analysis and detection techniques. ICTACT Journal of Soft Computing, 8(4) |
McIntosh, Timothy Raymond; (2018). RanDeter: using novel statistical and physical controls to deter ransomware attacks: a thesis presented in partial fulfillment of the requirements for the degree of Master of Information Sciences in Software Engineering at Massey University, Auckland, New Zealand. . Massey University. |
Meng, Zhaoyi; Xiong, Yan; Huang, Wenchao; Miao, Fuyou; Huang, Jianmeng; Jung, Taeho; (2018). App Angiogram: Revealing Contextual Information in Android App Behaviors by API-Level Audit Logs. arXiv preprint arXiv:1809.07036 |
Mizuno, Sho; Hatada, Mitsuhiro; Mori, Tatsuya; Goto, Shigeki; (2018). Detecting malware-infected devices using the http header patterns. IEICE Transactions on Information and Systems, 101(5), 1370-1379. The Institute of Electronics, Information and Communication Engineers. |
Monnappa, KA; (2018). Learning Malware Analysis: Explore the concepts, tools, and techniques to analyze and investigate Windows malware. . Packt Publishing Ltd. |
Musavi, Seyyedeh Atefeh; Hashemi, Mahmoud Reza; (2018). HPCgnature: a hardware-based application-level intrusion detection system. IET Information Security, 13(1), 19-26. IET. |
Muñoz, Jose Antonio Quevedo; (2018). Sistemas Informáticos. |
Narayanan, Annamalai; Chandramohan, Mahinthan; Chen, Lihui; Liu, Yang; (2018). A multi-view context-aware approach to Android malware detection and malicious code localization. Empirical Software Engineering, 23(3), 1222-1274. Springer US. |
Narayanan, Annamalai; Soh, Charlie; Chen, Lihui; Liu, Yang; Wang, Lipo; (2018). apk2vec: Semi-supervised multi-view representation learning for profiling Android applications. 2018 IEEE International Conference on Data Mining (ICDM), 357-366. IEEE. |
Nauman, Mohammad; Tanveer, Tamleek Ali; Khan, Sohail; Syed, Toqeer Ali; (2018). Deep neural architectures for large scale android malware analysis. Cluster Computing, 21(1), 569-588. Springer US. |
Navarro, Luiz C; Navarro, Alexandre KW; Grégio, André; Rocha, Anderson; Dahab, Ricardo; (2018). Leveraging ontologies and machine-learning techniques for malware analysis into Android permissions ecosystems. Computers & Security, 78, 429-453. Elsevier. |
Navarro, Luiz Claudio; (2018). A supervised method for finding discriminant variables in complex problem analysis: case studies on Android security and source printer attribution= Um método supervisionado para encontrar variáveis discriminantes na análise de problemas complexos: estudos de caso em segurança do Android e em atribuição de impressora fonte. . [sn]. |
Naway, Abdelmonim; Li, Yuancheng; (2018). A review on the use of deep learning in android malware detection. arXiv preprint arXiv:1812.10360 |
Nguyen, Andre T; Raff, Edward; (2018). Adversarial attacks, regression, and numerical stability regularization. arXiv preprint arXiv:1812.02885 |
Nguyen, Minh Hai; Le Nguyen, Dung; Nguyen, Xuan Mao; Quan, Tho Thanh; (2018). Auto-detection of sophisticated malware using lazy-binding control flow graph and deep learning. Computers & Security, 76, 128-155. Elsevier. |
Nõmm, Sven; (2018). APPLICATION OF FULL MACHINE LEARNING WORKFLOW FOR MALWARE DETECTION IN ANDROID ON THE BASIS OF SYSTEM CALLS AND PERMISSIONS. |
Odusami, Modupe; Abayomi-Alli, Olusola; Misra, Sanjay; Shobayo, Olamilekan; Damasevicius, Robertas; Maskeliunas, Rytis; (2018). Android malware detection: A survey. International Conference on Applied Informatics, 255-266. Springer. |
Olowoyeye, Olaboyejo; (2018). Evaluating Open Source Malware Sandboxes with Linux malware. . Auckland University of Technology. |
Olukoya, Oluwafemi; Mackenzie, Lewis; Omoronyia, Inah; (2018). Permission-based Risk Signals for App Behaviour Characterization in Android Apps. |
Onwuzurike, Lucky; Almeida, Mario; Mariconti, Enrico; Blackburn, Jeremy; Stringhini, Gianluca; De Cristofaro, Emiliano; (2018). A family of droids-Android malware detection via behavioral modeling: Static vs dynamic analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST), 1-10. IEEE. |
Onwuzurike, Lucky; Almeida, Mario; Mariconti, Enrico; Blackburn, Jeremy; Stringhini, Gianluca; De Cristofaro, Emiliano; (2018). A family of droids: Analyzing behavioral model based android malware detection via static and dynamic analysis. arXiv preprint arXiv:1803.03448 |
Ouerdi, Noura; Hajji, Tarik; Palisse, Aurelien; Lanet, Jean-Louis; Azizi, Abdelmalek; (2018). Classification of Ransomware Based on Artificial Neural Networks. International Conference Europe Middle East & North Africa Information Systems and Technologies to Support Learning, 384-392. Springer. |
Pagani, Fabio; Dell'Amico, Matteo; Balzarotti, Davide; (2018). Beyond precision and recall: understanding uses (and misuses) of similarity hashes in binary analysis. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, 354-365 |
Pajar Setia, Tesa; (2018). ANALISIS MALWARE FLAWED AMMYY RAT DENGAN METODE REVERSE ENGINEERING. . Universitas Siliwangi. |
Pektaş, Abdurrahman; Pektaş, Elif Nurdan; Acarman, Tankut; (2018). Mining Patterns of Sequential Malicious APIs to Detect Malware. International Journal of Network Security & Its Applications (IJNSA) Vol, 10 |
Petrenko, Sergei; (2018). Finite Capabilities of Cybersecurity Technologies. Big Data Technologies for Monitoring of Computer Security: A Case Study of the Russian Federation, 61-114. Springer. |
Poudyal, Subash; Subedi, Kul Prasad; Dasgupta, Dipankar; (2018). A framework for analyzing ransomware using machine learning. 2018 IEEE Symposium Series on Computational Intelligence (SSCI), 1692-1699. IEEE. |
Raff, Edward; (2018). Malware Detection and Cyber Security via Compression. . University of Maryland, Baltimore County. |
Raff, Edward; Barker, Jon; Sylvester, Jared; Brandon, Robert; Catanzaro, Bryan; Nicholas, Charles K; (2018). Malware detection by eating a whole exe. Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence |
Raff, Edward; Nicholas, Charles; (2018). Toward Metric Indexes for Incremental Insertion and Querying. arXiv preprint arXiv:1801.05055 |
Raff, Edward; Zak, Richard; Cox, Russell; Sylvester, Jared; Yacci, Paul; Ward, Rebecca; Tracy, Anna; McLean, Mark; Nicholas, Charles; (2018). An investigation of byte n-gram features for malware classification. Journal of Computer Virology and Hacking Techniques, 14(1), 1-20. Springer Paris. |
Ramirez, A Gomez; Lara, Camilo; Betev, Latchezar; Bilanovic, Daniel; Kebschull, Udo; (2018). Arhuaco: Deep Learning and Isolation Based Security for Distributed High-Throughput Computing. arXiv preprint arXiv:1801.04179 |
Rhode, Matilda; Burnap, Pete; Jones, Kevin; (2018). Early-stage malware prediction using recurrent neural networks. computers & security, 77, 578-594. Elsevier. |
Rivera-Guevara, Richard Paul; (2018). Deteccion y Clasificacion de Malware con el Sistema de Análisis de Malware Cuckoo. |
Roseline, S Abijah; Geetha, S; (2018). Intelligent Malware Detection using Oblique Random Forest Paradigm. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 330-336. IEEE. |
Salehi, Saeid; Shahriari, HamidReza; Ahmadian, Mohammad Mehdi; Tazik, Ladan; (2018). A Novel Approach for Detecting DGA-based Ransomwares. 2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC), 1-7. IEEE. |
Sanchez, Cesar A; Zaıdi, Fatiha; (2018). Design of a Secure Shield for Internet and Web-Based Services Using Software Reflection. Web Services–ICWS 2018: 25th International Conference, Held as Part of the Services Conference Federation, SCF 2018, Seattle, WA, USA, June 25-30, 2018, Proceedings, 10966, 472. Springer. |
Sang, Dinh Viet; Cuong, Dang Manh; Cuong, Le Tran Bao; (2018). An Effective Ensemble Deep Learning Framework for Malware Detection. Proceedings of the Ninth International Symposium on Information and Communication Technology, 192-199 |
Saputra, Hendra; Basuki, Setio; Faiqurahman, Mahar; (2018). Implementasi Teknik Seleksi Fitur Pada Klasifikasi Malware Android Menggunakan Support Vector Machine. Fountain of Informatics Journal, 3(1). Universitas Darussalam Gontor. |
Sato, Leonardo Correia; (2018). Deep Learning na segurança computacional: detecção inteligente de códigos maliciosos. . Universidade Tecnológica Federal do Paraná. |
Shalaginov, Andrii; Banin, Sergii; Dehghantanha, Ali; Franke, Katrin; (2018). Machine learning aided static malware analysis: A survey and tutorial. Cyber Threat Intelligence, 7-45. Springer. |
Sharma, Daya Ram; Zemmari, Akka; Mosbah, Mohamed; Conti, Mauro; (2018). Unraveling Reflection Induced Sensitive Leaks in Android Apps. Risks and Security of Internet and Systems: 12th International Conference, CRiSIS 2017, Dinard, France, September 19-21, 2017, Revised Selected Papers, 10694, 49. Springer. |
Sharma, Kavita; Gupta, Brij B; (2018). Mitigation and risk factor analysis of android applications. Computers & Electrical Engineering, 71, 416-430. Elsevier. |
Sharma, Sonali; (2018). Design and implementation of malware detection scheme. International Journal of Computer Network and Information Security, 11(8), 58. Modern Education and Computer Science Press. |
Sharmeen, Shaila; Huda, Shamsul; Abawajy, Jemal H; Ismail, Walaa Nagy; Hassan, Mohammad Mehedi; (2018). Malware threats and detection for industrial mobile-IoT networks. IEEE access, 6, 15941-15957. IEEE. |
Shaukat, Saiyed Kashif; Ribeiro, Vinay J; (2018). RansomWall: A layered defense system against cryptographic ransomware attacks using machine learning. 2018 10th International Conference on Communication Systems & Networks (COMSNETS), 356-363. IEEE. |
Sheen, Shina; Yadav, Ashwitha; (2018). Ransomware detection by mining API call usage. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 983-987. IEEE. |
Shen, Jingya; Chen, Zhenxiang; Wang, Shanshan; Zhu, Yuhui; Hassan, Muhammad Umair; (2018). DroidDetector: a traffic-based platform to detect android malware using machine learning. Third International Workshop on Pattern Recognition, 10828, 108280N. International Society for Optics and Photonics. |
Shi, Wei; Zhou, Xin; Pang, Jianmin; Liang, Guanghui; Gu, Haoran; (2018). A New Multitasking Malware Classification Model Based on Feature Fusion. 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2376-2381. IEEE. |
Sihwail, Rami; Omar, Khairuddin; Ariffin, KA Zainol; (2018). A survey on malware analysis techniques: Static, dynamic, hybrid and memory analysis. International Journal on Advanced Science, Engineering and Information Technology, 8(4-2), 1662 |
Souri, Alireza; Hosseini, Rahil; (2018). A state-of-the-art survey of malware detection approaches using data mining techniques. Human-centric Computing and Information Sciences, 8(1), 3. Springer. |
Stahlberger, Michael; Straub, Tobias; (2018). Erkennung von Android-Malware mit maschinellem Lernen. |
Stavova, Vlasta; Dedkova, Lenka; Matyas, Vashek; Just, Mike; Smahel, David; Ukrop, Martin; (2018). Experimental large-scale review of attractors for detection of potentially unwanted applications. Computers & Security, 76, 92-100. Elsevier. |
Sun, Ruimin; Yuan, Xiaoyong; Lee, Andrew; Bishop, Matt; Porter, Donald E; Li, Xiaolin; Gregio, Andre; Oliveira, Daniela; (2018). Leveraging Uncertainty for Effective Malware Mitigation. arXiv preprint arXiv:1802.02503 |
Sykosch, Arnold; Ohm, Marc; Meier, Michael; (2018). Hunting Observable Objects for Indication of Compromise. Proceedings of the 13th International Conference on Availability, Reliability and Security, 1-8 |
Tam, Geran; Hunter, Aaron; (2018). Machine Learning to Identify Android Malware. 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), 1-5. IEEE. |
Tang, Mingdong; Qian, Quan; (2018). Dynamic API call sequence visualisation for malware classification. IET Information Security, 13(4), 367-377. IET. |
Thebeyanthan, K; Achsuthan, M; Ashok, S; Vaikunthan, P; Senaratne, AN; Abeywardena, KY; (2018). E-secure: An automated behavior based malware detection system for corporate e-mail traffic. Science and Information Conference, 1056-1071. Springer. |
Tian, Ke; (2018). Learning-based Cyber Security Analysis and Binary Customization for Security. . Virginia Tech. |
Torbjørnsen, Anders Sefjord; (2018). A Study of Applied Passive TLS Analysis. . NTNU. |
Turaev, Hasan; Zavarsky, Pavol; Swar, Bobby; (2018). Prevention of Ransomware Execution in Enterprise Environment on Windows OS: Assessment of Application Whitelisting Solutions. 2018 1st International Conference on Data Intelligence and Security (ICDIS), 110-118. IEEE. |
Vasupongayya, Sangsuree; (2018). Revealing the important features of mobile phishing. |
Verma, Mayank; Kumarguru, Ponnurangam; Deb, Shuva Brata; Gupta, Anuradha; (2018). Analysing indicator of compromises for ransomware: Leveraging IOCs with machine learning techniques. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI), 154-159. IEEE. |
Vidal, Jorge Maestre; Monge, Marco Antonio Sotelo; Villalba, Luis Javier García; (2018). A novel pattern recognition system for detecting Android malware by analyzing suspicious boot sequences. Knowledge-Based Systems, 150, 198-217. Elsevier. |
Wang, Chun-Yu; Ou, Chi-Lung; Zhang, Yu-En; Cho, Feng-Min; Chen, Pin-Hao; Chang, Jyh-Biau; Shieh, Ce-Kuen; (2018). BotCluster: A session-based P2P botnet clustering system on NetFlow. Computer Networks, 145, 175-189. Elsevier. |
Wang, Shanshan; Chen, Zhenxiang; Yan, Qiben; Ji, Ke; Wang, Lin; Yang, Bo; Conti, Mauro; (2018). Deep and broad learning based detection of android malware via network traffic. 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), 1-6. IEEE. |
Wang, Shanshan; Yan, Qiben; Chen, Zhenxiang; Wang, Lin; Spolaor, Riccardo; Yang, Bo; Conti, Mauro; (2018). Lexical Mining of Malicious URLs for Classifying Android malware. International Conference on Security and Privacy in Communication Systems, 248-263. Springer. |
Watkins, Lanier; Kalathummarath, Amritha Lal; Robinson, William H; (2018). Network-based detection of mobile malware exhibiting obfuscated or silent network behavior. 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), 1-4. IEEE. |
Webb, Matthew S; (2018). Evaluating tool based automated malware analysis through persistence mechanism detection. . Kansas State University. |
Wu, Peng; Wang, Junfeng; Tian, Bin; (2018). Software homology detection with software motifs based on function-call graph. IEEE Access, 6, 19007-19017. IEEE. |
XIAO, Jin-Qi; WANG, Jun-Feng; (2018). A malware variant clustering method based on fuzzy hash. Journal of Sichuan University (Natural Science Edition)(3), 9 |
XU, Ke; (2018). Advanced malware detection for android platform. . Singapore Management University. |
Xia, Shiming; Pan, Zhisong; Chen, Zhe; Bai, Wei; Yang, Haimin; (2018). Malware Classification with Markov Transition Field Encoded Images. 2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), 1-5. IEEE. |
Xiao, Jing-xu; Lu, Zi-cong; Xu, Qi-han; (2018). A new Android malicious application detection method using feature importance score. Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence, 145-150 |
Xiao, Zhijie; Li, Tao; Wang, Yuqiao; (2018). Using Hybrid Model for Android Malicious Application Detection Based on Population (Short Paper). International Conference on Collaborative Computing: Networking, Applications and Worksharing, 755-766. Springer. |
Xiaofeng, LU; Fangshuo, JIANG; Xiao, ZHOU; Baojiang, CUI; Shengwei, YI; Jing, SHA; (2018). API based sequence and statistical features in a combined malware detection architecture. Journal of Tsinghua University (Science and Technology), 58(5), 500-508 |
Xiaofeng, Lu; Xiao, Zhou; Fangshuo, Jiang; Shengwei, Yi; Jing, Sha; (2018). ASSCA: API based sequence and statistics features combined malware detection architecture. Procedia Computer Science, 129, 248-256. Elsevier. |
Xiaolin, Zhao; Yiman, Zhang; Xuhui, Li; Quanbao, Chen; (2018). Research on malicious code homology analysis method based on texture fingerprint clustering. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 1914-1921. IEEE. |
Xie, Nannan; Di, Xiaoqiang; Wang, Xing; Zhao, Jianping; (2018). Andro# &95MD: Android Malware Detection based on Convolutional Neural Networks.. International Journal of Performability Engineering, 14(3) |
Xie, Niannian; Zeng, Fanping; Qin, Xiaoxia; Zhang, Yu; Zhou, Mingsong; Lv, Chengcheng; (2018). Repassdroid: Automatic detection of android malware based on essential permissions and semantic features of sensitive apis. 2018 International Symposium on Theoretical Aspects of Software Engineering (TASE), 52-59. IEEE. |
Xu, Ke; Li, Yingjiu; Deng, Robert H; Chen, Kai; (2018). Deeprefiner: Multi-layer android malware detection system applying deep neural networks. 2018 IEEE European Symposium on Security and Privacy (EuroS&P), 473-487. IEEE. |
Xu, Zhiwu; Ren, Kerong; Qin, Shengchao; Craciun, Florin; (2018). CDGDroid: Android malware detection based on deep learning using CFG and DFG. International Conference on Formal Engineering Methods, 177-193. Springer. |
Xue, Shuangshuang; Zhang, Lan; Li, Anran; Li, Xiang-Yang; Ruan, Chaoyi; Huang, Wenchao; (2018). Appdna: App behavior profiling via graph-based deep learning. IEEE INFOCOM 2018-IEEE Conference on Computer Communications, 1475-1483. IEEE. |
Yan, Haisheng; Peng, Lingling; (2018). Android malware detection based on evolutionary super-network. AIP Conference Proceedings, 1955(1), 040154. AIP Publishing LLC. |
Yan, Hongbing; Xiong, Yan; Huang, Wenchao; Huang, Jianmeng; Meng, Zhaoyi; (2018). Automatically Detecting Malicious Sensitive Data Usage in Android Applications. 2018 4th International Conference on Big Data Computing and Communications (BIGCOM), 102-107. IEEE. |
Yang, Wei; (2018). Adversarial-resilience Assurance for Mobile Security Systems. . University of Illinois at Urbana-Champaign. |
Yin, Shang-Nan; Kang, Ho-Seok; Chen, Zhi-Guo; Kim, Sung-Ryul; (2018). A malware detection system based on heterogeneous information network. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems, 154-159 |
Yousefi-Azar, Mahmood; Hamey, Leonard GC; Varadharajan, Vijay; Chen, Shiping; (2018). Malytics: a malware detection scheme. IEEE Access, 6, 49418-49431. IEEE. |
Zhang, Jian; Gao, Cheng; Gong, Liangyi; Gu, Zhaojun; Man, Dapeng; Yang, Wu; Du, Xiaojiang; (2018). Malware detection based on dynamic multi-feature using ensemble learning at hypervisor. 2018 IEEE Global Communications Conference (GLOBECOM), 1-6. IEEE. |
Zhang, Ning; Xu, Guangquan; Meng, Guozhu; Zheng, Xi; (2018). SoProtector: securing native C/C++ libraries for mobile applications. International Conference on Algorithms and Architectures for Parallel Processing, 417-431. Springer. |
Zhang, Yifei; Li, Yue; Tan, Tian; Xue, Jingling; (2018). Ripple: Reflection analysis for android apps in incomplete information environments. Software: Practice and Experience, 48(8), 1419-1437 |
Zhao, Chunlei; Zheng, Wenbai; Gong, Liangyi; Zhang, Mengzhe; Wang, Chundong; (2018). Quick and accurate android malware detection based on sensitive APIs. 2018 IEEE International Conference on Smart Internet of Things (SmartIoT), 143-148. IEEE. |
Zheng, Chao; Li, Xiang; Liu, Qingyun; Sun, Yong; Fang, Binxing; (2018). Hashing Incomplete and Unordered Network Streams. IFIP International Conference on Digital Forensics, 199-224. Springer. |
Zheng, Chao; Li, Xiang; Liu, Qingyun; Sun, Yong; Fang, Binxing; (2018). SFH: Hashing Unordered and Incomplete Network Streams on the Fly. |
Zhou, Huan; (2018). Malware Detection with Neural Network Using Combined Features. China Cyber Security Annual Conference, 96-106. Springer. |
Zhou, Xin; Pang, Jianmin; Liu, Fudong; Wang, Jun; Yue, Feng; Liu, Xiaonan; (2018). Pdf Exploitable Malware Analysis Based on Exploit Genes. 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), 16-20. IEEE. |
Zhu, Hui-Juan; Jiang, Tong-Hai; Ma, Bo; You, Zhu-Hong; Shi, Wei-Lei; Cheng, Li; (2018). HEMD: a highly efficient random forest-based malware detection framework for Android. Neural Computing and Applications, 30(11), 3353-3361. Springer London. |
Zhu, Hui-Juan; You, Zhu-Hong; Zhu, Ze-Xuan; Shi, Wei-Lei; Chen, Xing; Cheng, Li; (2018). DroidDet: effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing, 272, 638-646. Elsevier. |
de Carnavalet, Xavier de Carné; Mannan, Mohammad; (2018). Analyzing “Not-a-Virus” Bundled Adware: The Wajam Case. |
Ács, Jakub; (2018). Statická detekce škodlivých souborů ve formátu PE. . České vysoké učení technické v Praze. Vypočetní a informační centrum.. |
Čeponis, Dainius; Goranin, Nikolaj; (2018). Towards a robust method of dataset generation of malicious activity for anomaly-based HIDS training and presentation of AWSCTD dataset. Baltic Journal of Modern Computing, 6(3), 217-234. University of Latvia. |
Čoklica, Matija; (2018). Metodologije i alati otvorenog koda za odziv i upravljanje sigurnosnim incidentima. . University of Zagreb. Faculty of Organization and Informatics. Department of …. |
卜同同; 曹天杰; (2018). 基于权限的 Android 应用风险评估方法. 计算机应用, 0-0 |
张卫丰; 刘蕊成; 许蕾; (2018). 基于动态行为分析的网页木马检测方法. 软件学报, 29(5), 1410-1421 |
朱晓妍; 章辉; 马建峰; (2018). 基于 Hook 技术的 Android 平台隐私保护系统. 网络与信息安全学报, 4(4), 38-47 |
杨宏宇; 王在明; (2018). Android 共谋攻击检测模型. 通信学报, 39(6), 27-36 |
王家琰; 徐开勇; 戴乐育; (2018). 一种基于权限特征的 Android 恶意应用检测方法. 计算机应用与软件, 35, 3 |
田瑞凡; 刘钊远; (2018). 基于 Android 恶意软件检测技术的研究. 计算机与数字工程, 46(3), 556-560,579 |
盛杰; 刘岳; 尹成语; (2018). 基于多特征和 Stacking 算法的 Android 恶意软件检测方法. 计算机系统应用, 27(2), 197-201 |
罗文塽; 曹天杰; (2018). 基于非用户操作序列的恶意软件检测方法. 计算机应用, 38(1), 56-60 |
肖锦琦; 王俊峰; (2018). 基于模糊哈希特征表示的恶意软件聚类方法. 四川大学学报 (自然科学版)(2018 年 03), 469-476. 四川大学. |
芦效峰; 蒋方朔; 周箫; 崔宝江; 伊胜伟; 沙晶; (2018). 基于 API 序列特征和统计特征组合的恶意样本检测框架. . 清华大学学报 (自然科学版). |
蒋晨; 胡玉鹏; 司凯; 旷文鑫; (2018). 基于图像纹理和卷积神经网络的恶意文件检测方法. 计算机应用, 0-0 |
陈红闵; 胡江村; (2018). 安卓恶意软件的静态检测方法. 计算机系统应用, 27(7), 26-33 |
강호석; 김성렬; (2018). 다이나믹 API 호출 흐름 그래프를 이용한 오프라인 기반 랜섬웨어 탐지 및 분석 기술 개발. 한국디지털콘텐츠학회 논문지, 19(2), 363-370 |
이승현; 문종섭; (2018). 명령 실행 모니터링과 딥 러닝을 이용한 파워셸 기반 악성코드 탐지 방법. 정보보호학회논문지, 28(5), 1197-1207 |
전덕조; 박동규; (2018). 머신 러닝 (Machine Learning) 기법을 활용한 실시간 악성파일 탐지 기법. 한국정보기술학회논문지, 16(3), 101-113 |
• 2017 • |
Abbas, Muhamed Fauzi Bin; Srikanthan, Thambipillai; (2017). Low-complexity signature-based malware detection for IoT devices. International Conference on Applications and Techniques in Information Security, 181-189. Springer, Singapore. |
Ahmad, Murtaza; Khan, MNA; (2017). A Review of Forensic Analysis Techniques for Android Phones. Journal of Independent Studies and Research-Computing, 15(1), 23-30 |
Ahn, Tae-Hyun; Oh, Sang-Jin; Kwon, Young-Man; (2017). Malware detection method using opcode and windows API calls. The Journal of The Institute of Internet, Broadcasting and Communication, 17(6), 11-17. The Institute of Internet, Broadcasting and Communication. |
Ali, Feizollah; (2017). A malware analysis and detection system for mobile devices/Ali Feizollah. . University of Malaya. |
Alruhaily, Nada; Bordbar, Behzad; Chothia, Tom; (2017). Towards an Understanding of the Misclassification Rates of Machine Learning-based Malware Detection Systems.. ICISSP, 101-112 |
Alruhaily, Nada; Chothia, Tom; Bordbar, Behzad; (2017). A Better Understanding of Machine Learning Malware Misclassifcation. International Conference on Information Systems Security and Privacy, 35-58. Springer. |
An, Ni; Duff, Alexander; Naik, Gaurav; Faloutsos, Michalis; Weber, Steven; Mancoridis, Spiros; (2017). Behavioral anomaly detection of malware on home routers. 2017 12th International Conference on Malicious and Unwanted Software (MALWARE), 47-54. IEEE. |
Anh, Huynh Ngoc; Ng, Wee Keong; Ariyapala, Kanishka; (2017). Predicting Risk Level of Executables: an Application of Online Learning. Workshop on Learning in the Presence of Class Imbalance and Concept Drift (LPCICD'17) |
Babenko, Ludmila; Kirillov, Alexey; (2017). Malware detection by meta-information of used system functions. Proceedings of the 10th International Conference on Security of Information and Networks, 240-244 |
Bosu, Amiangshu; Liu, Fang; Yao, Danfeng Daphne; Wang, Gang; (2017). Android Collusive Data Leaks with Flow-sensitive DIALDroid Dataset. Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P) |
Bosu, Amiangshu; Liu, Fang; Yao, Danfeng Daphne; Wang, Gang; (2017). Poster: Android collusive data leaks with flow-sensitive DIALDroid dataset. Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P) |
Bosu, Amiangshu; Liu, Fang; Yao, Danfeng; Wang, Gang; (2017). Collusive data leak and more: Large-scale threat analysis of inter-app communications. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, 71-85 |
Brandon Jr, Robert A; (2017). Vector Space Representations of Executable Code. . University of Maryland, Baltimore County. |
Byrne, Dermot; Thorpe, Christina; (2017). Jigsaw: An investigation and countermeasure for ransomware attacks. European Conference on Cyber Warfare and Security, 656-665. Academic Conferences International Limited. |
Calderini, Nicolás Nahuel; (2017). Estudio acerca de la calidad de artifacts sobre la plataforma Android. . Universidad de Buenos Aires. |
Carlin, Domhnall; O’Kane, Philip; Sezer, Sakir; (2017). Dynamic analysis of malware using run-time opcodes. Data analytics and decision support for cybersecurity, 99-125. Springer, Cham. |
Ceron, João Marcelo; (2017). MARS: uma arquitetura para análise de malwares utilizando SDN.. . Universidade de São Paulo. |
Ceron, João Marcelo; Margi, Cíntia Borges; Granville, Lisandro Zambenedetti; (2017). MARS: From traffic containment to network reconfiguration in malware-analysis systems. Computer Networks, 129, 261-272. Elsevier. |
Chen, Zhi-Guo; Kang, Ho-Seok; Yin, Shang-Nan; Kim, Sung-Ryul; (2017). Automatic ransomware detection and analysis based on dynamic API calls flow graph. Proceedings of the International Conference on Research in Adaptive and Convergent Systems, 196-201 |
Cho, Hyei Sun; Lee, Seul Gi; Kim, Nak Hyun; Kim, Byung Ik; Lee, Tai Jin; (2017). Method for managing violation incident information and violation incident management system and computer-readable recording medium. . US Patent App. 15/006,708. |
Choudhary, Mahima; Kishore, Brij; (2017). ANDROID MALWARE DETECTION USING HAML.. International Journal of Advanced Research in Computer Science, 8(9) |
Christensen, JB; Beuschau, Niels; (2017). Ransomware detection and mitigation tool. . M. Sc. Thesis, Technical University of Denmark. |
Cybenko, George; Stocco, Gabriel; Sweeney, Patrick; (2017). 量化欺骗性网络空间操作的隐蔽性. |
Das, Prajit Kumar; (2017). Context-dependent privacy and security management on mobile devices. Ph. D. Dissertation |
DeMarcus, Thomas; Miller, Cody; Glendowne, Dae; Cook, Henry; Lanclos, Chris; Pape, Patrick (2017). Insights Gained From Constructing a Large Scale Dynamic Analysis Platform. |
Do Duy, Thao; Van, Ke Hoang; Le, Tuan Dinh; (2017). Metamorphic Malware Detection by PE Analysis with the Longest Common Sequence. Future Data and Security Engineering: 4th International Conference, FDSE 2017, Ho Chi Minh City, Vietnam, November 29–December 1, 2017, Proceedings, 10646, 262. Springer. |
Dong, Youchao; (2017). Android Malware Prediction by Permission Analysis and Data Mining. |
FEIZOLLAH, ALI; (2017). A MALWARE ANALYSIS AND DETECTION SYSTEM FOR MOBILE DEVICES. . UNIVERSITY OF MALAYA KUALA LUMPUR. |
Fairouz, Abbas; Khatri, Sunil P; (2017). An FPGA-based coprocessor for hash unit acceleration. 2017 IEEE International Conference on Computer Design (ICCD), 301-304. IEEE. |
Fan, Ming; Liu, Jun; Wang, Wei; Li, Haifei; Tian, Zhenzhou; Liu, Ting; (2017). Dapasa: detecting android piggybacked apps through sensitive subgraph analysis. IEEE Transactions on Information Forensics and Security, 12(8), 1772-1785. IEEE. |
Feng, Pengbin; Ma, Jianfeng; Sun, Cong; (2017). Selecting critical data flows in Android applications for abnormal behavior detection. Mobile Information Systems, 2017. Hindawi. |
Fowler Ph D, James E; (2017). Compression of Virtual-Machine Memory in Dynamic Malware Analysis. Journal of Digital Forensics, Security and Law, 12(1), 9 |
Fraley, James B; (2017). Improved detection for advanced polymorphic malware. |
Fu, Hao; Zheng, Zizhan; Zhu, Sencun; Mohapatra, Prasant; (2017). INSPIRED: Intention-based Privacypreserving Permission Model. arXiv preprint arXiv:1709.06654 |
Gadient, Pascal; Nierstrasz, Oscar; Ghafari, Mohammad; (2017). Security in Android applications. PhD diss., Master s thesis. University of Bern |
Gajrani, Jyoti; Laxmi, Vijay; Tripathi, Meenakshi; Gaur, Manoj S; Sharma, Daya Ram; Zemmari, Akka; Mosbah, Mohamed; Conti, Mauro; (2017). Unraveling reflection induced sensitive leaks in Android apps. International Conference on Risks and Security of Internet and Systems, 49-65. Springer. |
Gandotra, Ekta; Bansal, Divya; Sofat, Sanjeev; (2017). A framework for generating malware threat intelligence. Scalable Computing: Practice and Experience, 18(3), 195-206 |
Gandotra, Ekta; Bansal, Divya; Sofat, Sanjeev; (2017). Malware threat assessment using fuzzy logic paradigm. Cybernetics and Systems, 48(1), 29-48. Taylor & Francis. |
Gomez Ramirez, A; Lara, C; Martinez Pedreira, M; Betev, Latchezar; Kebschull, U; Grigoras, C; (2017). arXiv: A Security Monitoring Framework For Virtualization Based HEP Infrastructures. J. Phys.: Conf. Ser., 898(arXiv: 1704.04782), 102004 |
Grajeda, Cinthya; Breitinger, Frank; Baggili, Ibrahim; (2017). Availability of datasets for digital forensics–And what is missing. Digital Investigation, 22, S94-S105. Elsevier. |
Gržinić, Toni; (2017). Hibridna metoda otkrivanja zlonamjernih programa. . University of Zagreb. Faculty of Organization and Informatics Varaždin.. |
Guo, Wei; Wang, Tenghai; Wei, Jizeng; (2017). Malware detection with convolutional neural network using hardware events. CCF National Conference on Compujter Engineering and Technology, 104-115. Springer. |
Haffner, Franziska; (2017). Automatisierte Erkennung von Malware auf Linux Systemen mit Hilfe von Indicators of Compromise. |
Hai, Nguyen Minh; Ogawa, Mizuhito; Tho, Quan Thanh; (2017). Packer identification based on metadata signature. Proceedings of the 7th Software Security, Protection, and Reverse Engineering/Software Security and Protection Workshop, 1-11 |
Hai, Nguyen Minh; Tho, Quan Thanh; (2017). Packer Identification Using Hidden Markov Model. International Workshop on Multi-disciplinary Trends in Artificial Intelligence, 92-105. Springer. |
Halbwachs, Nicolas; Levrat, Bernard; Marion, Jean-Yves; Hallé, Sylvain; Fernandez, Jean Claude; Acarman, Tankut; (2017). Behavior based malware classification using online machine learning. |
Hanif, Zachary D; Zarras, Apostolis; Eckert, Claudia; (2017). Finding the Needle: A Study of the PE32 Rich Header and Respective Malware Triage. Detection of Intrusions and Malware, and Vulnerability Assessment: 14th International Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings, 10327, 119. Springer. |
Hansen, Joachim; (2017). The study of keyword search in open source search engines and digital forensics tools with respect to the needs of cyber crime investigations. . NTNU. |
Hasan, Md Mahbub; Rahman, Md Mahbubur; (2017). RansHunt: A support vector machines based ransomware analysis framework with integrated feature set. 2017 20th International Conference of Computer and Information Technology (ICCIT), 1-7. IEEE. |
Hastings, Curt; Mainieri, Ronnie; (2017). Computer activity learning from system call time series. arXiv preprint arXiv:1711.02088 |
Hatada, Mitsuhiro; Mori, Tatsuya; (2017). Detecting and classifying Android PUAs by similarity of DNS queries. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), 2, 590-595. IEEE. |
Haydaman, Jason; (2017). Application of machine learning to computer network security. |
He, Yi; Li, Qi; Sun, Kun; (2017). LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection. International Conference on Security and Privacy in Communication Systems, 291-311. Springer. |
Hidden, Packer Identification Using; (2017). Markov Model. Multi-disciplinary Trends in Artificial Intelligence: 11th International Workshop, MIWAI 2017, Gadong, Brunei, November 20-22, 2017, Proceedings, 10607, 92. Springer. |
Hou, Su; Lu, Tianliang; Du, Yanhui; Guo, Jing; (2017). Static detection of Android malware based on improved random forest algorithm. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), 200-200. IEEE. |
Huynh, Ngoc Anh; Ng, Wee Keong; Ariyapala, Kanishka; (2017). A new adaptive learning algorithm and its application to online malware detection. International Conference on Discovery Science, 18-32. Springer. |
Idrees, Fauzia; Rajarajan, Muttukrishnan; Chen, Thomas M; Rahulamathavan, Yogachandran; Naureen, Ayesha; (2017). AndroPIn: Correlating Android permissions and intents for malware detection. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 394-399. IEEE. |
Idrees, Fauzia; Rajarajan, Muttukrishnan; Conti, Mauro; Chen, Thomas M; Rahulamathavan, Yogachandran; (2017). PIndroid: A novel Android malware detection system using ensemble learning methods. Computers & Security, 68, 36-46. Elsevier Advanced Technology. |
Ilham, Soussi; Ghadi, Abderrahim; (2017). Detection and classification of malwares in mobile applications. Proceedings of the Mediterranean Symposium on Smart City Applications, 188-199. Springer. |
Jain, Aruna; Singh, Akash Kumar; (2017). Integrated Malware analysis using machine learning. 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), 1-8. IEEE. |
Jerlin, Asha; Chinnappan, Jayakumar; (2017). ESAA: Efficient Sequence Alignment Algorithm for Dynamic Malware Analysis in Windows Executable Using API Call Sequence. DNA sequence, 291 |
Jin, Han; Rongcai, Zhao; Zhen, Shan; Fudong, Liu; Bingling, Zhao; Xi, Meng; Hongyan, Wang; (2017). Analyzing and recognizing android malware via semantic-based malware gene. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 17-20. IEEE. |
Jin, Xin; Xiong, Yan; Huang, Wenchao; Meng, Zhaoyi; (2017). Mining Anomalous Usage of Sensitive Data through Anomaly Detection. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM), 59-67. IEEE. |
Kanaker, Hasan; Saudi, Madihah Mohd; Azman, Norhidayah; (2017). Evaluation of EWCDMCC Cloud Worm Detection Classification Based on Statistical Analysis. Advanced Science Letters, 23(6), 5365-5369. American Scientific Publishers. |
Karbab, ElMouatez Billah; Debbabi, Mourad; Derhab, Abdelouahid; Mouheb, Djedjiga; (2017). Android malware detection using deep learning on API method sequences. arXiv preprint arXiv:1712.08996 |
Ke, SHEN; Xiaojun, YE; Xiaonan, LIU; Bin, LI; (2017). Android App behavior-intent inference based on API usage analysis. Journal of Tsinghua University (Science and Technology), 57(11), 1139-1144 |
Kolosnjaji, Bojan; Eraisha, Ghadir; Webster, George; Zarras, Apostolis; Eckert, Claudia; (2017). Empowering convolutional networks for malware classification and analysis. 2017 International Joint Conference on Neural Networks (IJCNN), 3838-3845. IEEE. |
Kotzias, Platon; Caballero, Juan; (2017). An analysis of pay-per-install economics using entity graphs. Proceedings (online) of the Workshop on Economics and Information Security (WEIS) |
Kumar, Ajit; (2017). A framework for malware detection with static features using machine learning algorithms. . Department of Computer Science, Pondicherry University. |
Le Guernic, Colas; Legay, Axel; (2017). Ransomware and the legacy crypto API. Risks and Security of Internet and Systems: 11th International Conference, CRiSIS 2016, Roscoff, France, September 5-7, 2016, Revised Selected Papers, 10158, 11. Springer. |
Lee, Seul Gi; Cho, Hyei Sun; Kim, Nak Hyun; Kim, Byung Ik; Lee, Tai Jin; (2017). Violation information intelligence analysis system. . US Patent App. 15/006,761. |
Lee, Seul Gi; Cho, Hyei Sun; Kim, Nak Hyun; Kim, Byung Ik; Lee, Tai Jin; (2017). Violation information management module forming violation information intelligence analysis system. . US Patent App. 15/006,770. |
Leguesse, Yonas; Vella, Mark; Ellul, Joshua; (2017). AndroNeo: Hardening Android Malware Sandboxes by Predicting Evasion Heuristics. IFIP International Conference on Information Security Theory and Practice, 140-152. Springer. |
Li, Yong; Ma, YuanYuan; Chen, Mu; Dai, ZaoJian; (2017). A detecting method for malicious mobile application based on incremental SVM. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 1246-1250. IEEE. |
Li, Yuping; Jang, Jiyong; Hu, Xin; Ou, Xinming; (2017). Android malware clustering through malicious payload mining. International Symposium on Research in Attacks, Intrusions, and Defenses, 192-214. Springer, Cham. |
Liakopoulos, Nikolaos; (2017). Malware analysis & C2 covert channels. . Πανεπιστήμιο Πειραιώς. |
Lim, Charles; Kotualubun, Yohanes Syailendra; Ramli, Kalamullah; (2017). Mal-Xtract: Hidden Code Extraction using Memory Analysis. Journal of Physics: Conference Series, 801(1), 012058. IOP Publishing Ltd.. |
Lu, Tianliang; Zhang, Lu; Wang, Shunye; Gong, Qi; (2017). Ransomware detection based on V-detector negative selection algorithm. 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), 531-536. IEEE. |
Ma, Zhao-hui; Chen, Zi-hao; Wang, Xin-ming; Nie, Rui-hua; Zhao, Gan-sen; Wu, Jie-chao; Ren, Xue-qi; (2017). Shikra: a behavior-based android malware detection framework. 2017 International Conference on Green Informatics (ICGI), 175-184. IEEE. |
Martin, William J; (2017). App Store Analysis for Software Engineering. . UCL (University College London). |
Martín, Alejandro; Menéndez, Héctor D; Camacho, David; (2017). MOCDroid: multi-objective evolutionary classifier for Android malware detection. Soft Computing, 21(24), 7405-7415. Springer Berlin Heidelberg. |
Meijer, Rob J; (2017). MattockFS; Page-cache and access-control concerns in asynchronous message-based forensic frameworks on the Linux platform. arXiv preprint arXiv:1703.00369 |
Meng, Guozhu; (2017). A semantic-based analysis of Android malware for detection, generation, and trend analysis. |
Meng, Guozhu; Xue, Yinxing; Siow, Jing Kai; Su, Ting; Narayanan, Annamalai; Liu, Yang; (2017). Androvault: Constructing knowledge graph from millions of android apps for automated analysis. arXiv preprint arXiv:1711.07451 |
Miller, Cody; Glendowne, Dae; Cook, Henry; Thomas, DeMarcus; Lanclos, Chris; Pape, Patrick; (2017). Insights gained from constructing a large scale dynamic analysis platform. Digital Investigation, 22, S48-S56. Elsevier. |
Ming, Jiang; Xu, Dongpeng; Jiang, Yufei; Wu, Dinghao; (2017). Binsim: Trace-based semantic binary diffing via system call sliced segment equivalence checking. 26th {USENIX} Security Symposium ({USENIX} Security 17), 253-270 |
Mishra, Preeti; Pilli, Emmanuel S; Varadharajan, Vijay; Tupakula, Udaya; (2017). Intrusion detection techniques in cloud environment: A survey. Journal of Network and Computer Applications, 77, 18-47. Elsevier. |
Mizuno, Sho; Hatada, Mitsuhiro; Mori, Tatsuya; Goto, Shigeki; (2017). Botdetector: A robust and scalable approach toward detecting malware-infected devices. 2017 IEEE International Conference on Communications (ICC), 1-7. IEEE. |
Modi, Ajay; Doupé, A; (2017). Automated Confidence Score Measurement of Threat Indicators. . Arizona State University. |
Mosli, Rayan; Li, Rui; Yuan, Bo; Pan, Yin; (2017). A behavior-based approach for malware detection. IFIP International Conference on Digital Forensics, 187-201. Springer. |
Moussa, Majda; Di Penta, Massimiliano; Antoniol, Giuliano; Beltrame, Giovanni; (2017). ACCUSE: helping users to minimize Android app privacy concerns. 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft), 144-148. IEEE. |
Mumtaz, Haris; El-Alfy, El-Sayed M; (2017). Critical review of static taint analysis of android applications for detecting information leakages. 2017 8th International Conference on Information Technology (ICIT), 446-454. IEEE. |
Nguyen-Vu, Long; Chau, Ngoc-Tu; Kang, Seongeun; Jung, Souhwan; (2017). Android rooting: An arms race between evasion and detection. Security and Communication Networks, 2017. Hindawi. |
O’KANE, PHILIP; SEZER, SAKIR; (2017). The Effects of Traditional Anti-Virus Labels on Malware Detection Using Dynamic Runtime Opcodes. |
Palisse, Aurélien; Durand, Antoine; Le Bouder, Hélène; Le Guernic, Colas; Lanet, Jean-Louis; (2017). Data aware defense (dad): Towards a generic and practical ransomware countermeasure. Nordic Conference on Secure IT Systems, 192-208. Springer. |
Pektaş, Abdurrahman; Acarman, Tankut; (2017). Classification of malware families based on runtime behaviors. Journal of information security and applications, 37, 91-100. Elsevier. |
Pektaş, Abdurrahman; Acarman, Tankut; (2017). Ensemble machine learning approach for android malware classification using hybrid features. International Conference on Computer Recognition Systems, 191-200. Springer, Cham. |
Pektaş, Abdurrahman; Acarman, Tankut; (2017). Malware classification based on API calls and behaviour analysis. IET Information Security, 12(2), 107-117. IET. |
Petsios, Theofilos; Tang, Adrian; Stolfo, Salvatore; Keromytis, Angelos D; Jana, Suman; (2017). Nezha: Efficient domain-independent differential testing. 2017 IEEE Symposium on Security and Privacy (SP), 615-632. IEEE. |
Pooryousef, Shahrooz; Amini, Morteza; (2017). Enhancing accuracy of android malware detection using intent instrumentation. International Conference on Information Systems Security and Privacy, 2, 380-388. SCITEPRESS. |
Pooryousef, Shahrooz; Fouladi, Kazim; (2017). Proposing a new feature for structure-aware analysis of android malwares. 2017 14th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC), 93-98. IEEE. |
Popov, Igor; (2017). Malware detection using machine learning based on word2vec embeddings of machine code instructions. 2017 Siberian Symposium on Data Science and Engineering (SSDSE), 1-4. IEEE. |
Raff, Edward; Nicholas, Charles; (2017). Malware classification and class imbalance via stochastic hashed LZJD. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 111-120 |
Raff, Edward; Sylvester, Jared; Nicholas, Charles; (2017). Learning the pe header, malware detection with minimal domain knowledge. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 121-132 |
Rubio Ayala, Sebastian; (2017). An automated behaviour-based malware analysis method based on free open source software. |
Rump, Fabian; Behner, Timm; Ernst, Raphael; (2017). Distributed and Collaborative Malware Analysis with MASS. 2017 IEEE 42nd Conference on Local Computer Networks (LCN), 191-194. IEEE. |
Seifi, Hassan; Parsa, Saeed; (2017). Mining malicious behavioural patterns. IET Information Security, 12(1), 60-70. IET. |
Shalaginov, Andrii; Franke, Katrin; (2017). A deep neuro-fuzzy method for multi-label malware classification and fuzzy rules extraction. 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 1-8. IEEE. |
Silva, Raphael Campos; (2017). Malflow: um framework para geração automatizada de assinaturas de malwares baseado em fluxo de dados de rede. . Universidade Estadual Paulista (UNESP). |
Sujyothi, Akshatha; Acharya, Shreenath; (2017). Dynamic malware analysis and detection in virtual environment. International Journal of Modern Education and Computer Science, 9(3), 48. Modern Education and Computer Science Press. |
Sun, Bowen; Li, Qi; Guo, Yanhui; Wen, Qiaokun; Lin, Xiaoxi; Liu, Wenhan; (2017). Malware family classification method based on static feature extraction. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 507-513. IEEE. |
Sun, Lichao; Wei, Xiaokai; Zhang, Jiawei; He, Lifang; Philip, S Yu; Srisa-an, Witawas; (2017). Contaminant removal for android malware detection systems. 2017 IEEE International Conference on Big Data (Big Data), 1053-1062. IEEE. |
Sun, Ruimin; Yuan, Xiaoyong; Lee, Andrew; Bishop, Matt; Porter, Donald E; Li, Xiaolin; Gregio, Andre; Oliveira, Daniela; (2017). The dose makes the poison—Leveraging uncertainty for effective malware detection. 2017 IEEE Conference on Dependable and Secure Computing, 123-130. IEEE. |
Tan, Min; Yu, Min; Wang, Yongjian; Li, Song; Liu, Chao; (2017). Android malware detection combining feature correlation and Bayes classification model. 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), 664-668. IEEE. |
Tao, Guanhong; Zheng, Zibin; Guo, Ziying; Lyu, Michael R; (2017). MalPat: mining patterns of malicious and benign android apps via permission-related APIs. IEEE Transactions on Reliability, 67(1), 355-369. IEEE. |
Taubmann, Benjamin; Kolosnjaji, Bojan; (2017). Architecture for resource-aware vmi-based cloud malware analysis. Proceedings of the 4th Workshop on Security in Highly Connected IT Systems, 43-48 |
Thomas, Zachary; Abdelwahed, Sherif; (2017). Active malware countermeasure approach for mission critical systems. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), 632-638. IEEE. |
Thoresen, Halvor Mydske; (2017). Automated triage of samples for malware analysis. . NTNU. |
Tian, Ke; Yao, Danfeng; Ryder, Barbara G; Tan, Gang; Peng, Guojun; (2017). Detection of repackaged android malware with code-heterogeneity features. IEEE Transactions on Dependable and Secure Computing, 17(1), 64-77. IEEE. |
Vinayakumar, R; Soman, KP; Velan, KK Senthil; Ganorkar, Shaunak; (2017). Evaluating shallow and deep networks for ransomware detection and classification. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 259-265. IEEE. |
Vu, Thanh Nguyen; Nguyen, Toan Tan; Trung, Hieu Phan; Do Duy, Thao; Van, Ke Hoang; Le, Tuan Dinh; (2017). Metamorphic malware detection by PE analysis with the longest common sequence. International Conference on Future Data and Security Engineering, 262-272. Springer. |
Wang, Chundong; Li, Zhiyuan; Gong, Liangyi; Mo, Xiuliang; Yang, Hong; Zhao, Yi; (2017). An android malicious code detection method based on improved dca algorithm. Entropy, 19(2), 65. Multidisciplinary Digital Publishing Institute. |
Wang, Jiong; Li, Boquan; Zeng, Yuwei; (2017). Xgboost-based android malware detection. 2017 13th International Conference on Computational Intelligence and Security (CIS), 268-272. IEEE. |
Wang, Quanmin; Li, Zhenguo; Zheng, Shuang; Gu, Shi; Sun, Yanfeng; Wang, Kaiyang; (2017). Detecting Unknown Malware on Android by Machine Learning Using the Feature of Dalvik Operation Code. 2nd International Conference on Automatic Control and Information Engineering (ICACIE 2017). Atlantis Press. |
Wang, Shanshan; Chen, Zhenxiang; Li, Xiaomei; Wang, Lin; Ji, Ke; Zhao, Chuan; (2017). Android malware clustering analysis on network-level behavior. International Conference on Intelligent Computing, 796-807. Springer, Cham. |
Wang, Shanshan; Yan, Qiben; Chen, Zhenxiang; Yang, Bo; Zhao, Chuan; Conti, Mauro; (2017). Detecting android malware leveraging text semantics of network flows. IEEE Transactions on Information Forensics and Security, 13(5), 1096-1109. IEEE. |
Wang, Tzy-Shiah; Lin, Hui-Tang; Cheng, Wei-Tsung; Chen, Chang-Yu; (2017). DBod: Clustering and detecting DGA-based botnets using DNS traffic analysis. Computers & Security, 64, 1-15. Elsevier Advanced Technology. |
Wang, Xing; Wang, Wei; He, Yongzhong; Liu, Jiqiang; Han, Zhen; Zhang, Xiangliang; (2017). Characterizing Android apps’ behavior for effective detection of malapps at large scale. Future generation computer systems, 75, 30-45. North-Holland. |
Webster, George D; Kolosnjaji, Bojan; von Pentz, Christian; Kirsch, Julian; Hanif, Zachary D; Zarras, Apostolis; Eckert, Claudia; (2017). Finding the needle: A study of the PE32 rich header and respective malware triage. International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 119-138. Springer, Cham. |
Wei, Fengguo; Li, Yuping; Roy, Sankardas; Ou, Xinming; Zhou, Wu; (2017). Deep ground truth analysis of current android malware. International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 252-276. Springer, Cham. |
Wen, Guanchao; Hu, Yupeng; Jiang, Chen; Cao, Na; Qin, Zheng; (2017). A image texture and BP neural network basec malicious files detection technique for cloud storage systems. 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 426-431. IEEE. |
Xie, Xiongwei; (2017). Security Improvement in Cloud Computing Environment through Memory Analysis. . The University of North Carolina at Charlotte. |
Xu, Yanping; Wu, Chunhua; Zheng, Kangfeng; Wang, Xu; Niu, Xinxin; Lu, Tianliang; (2017). Computing adaptive feature weights with PSO to improve Android malware detection. Security and Communication Networks, 2017. Hindawi. |
Yang, Wei; Kong, Deguang; Xie, Tao; Gunter, Carl A; (2017). Malware detection in adversarial settings: Exploiting feature evolutions and confusions in android apps. Proceedings of the 33rd Annual Computer Security Applications Conference, 288-302 |
Yang, Xinli; Lo, David; Li, Li; Xia, Xin; Bissyandé, Tegawendé F; Klein, Jacques; (2017). Characterizing malicious android apps by mining topic-specific data flow signatures. Information and Software Technology, 90, 27-39. Elsevier. |
Ye, Shuangwei; Zhangb, Yue; (2017). Android malware detection based on Multi-Class Features. |
Ye, Yilin; Wu, Lifa; Hong, Zheng; Huang, Kangyu; (2017). A Risk Classification Based Approach for Android Malware Detection.. TIIS, 11(2), 959-981 |
Yousefi-Azar, Mahmood; Hamey, Len; Varadharajan, Vijay; McDonnell, Mark D; (2017). Fast, automatic and scalable learning to detect android malware. International Conference on Neural Information Processing, 848-857. Springer. |
Yousefi-Azar, Mahmood; Hamey, Len; Varadharajan, Vijay; McDonnell, Mark D; (2017). Extremely Fast, Automatic and Scalable Learning to Detect Android Malware. |
ZENG, ZHE-LING; NI, YI-TAO; LIN, BO-GANG; (2017). Permissions Based Android Malware Stealing Privacy Data Detection. DEStech Transactions on Computer Science and Engineering(iceit) |
Zak, Richard; Raff, Edward; Nicholas, Charles; (2017). What can N-grams learn for malware detection?. 2017 12th International Conference on Malicious and Unwanted Software (MALWARE), 109-118. IEEE. |
Zatloukal, Filip; Znoj, Jiri; (2017). Malware detection based on multiple pe headers identification and optimization for specific types of files. Journal of Advanced Engineering and Computation, 1(2), 153-161 |
Zhao, Yang; Xu, Guangquan; Zhang, Yao; (2017). HFA-MD: An Efficient Hybrid Features Analysis Based Android Malware Detection Method. International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, 248-257. Springer. |
Zhou, Xin; Pang, Jianmin; Liang, Guanghui; (2017). Image classification for malware detection using extremely randomized trees. 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), 54-59. IEEE. |
Zhu, Dali; Jin, Hao; Yang, Ying; Wu, Di; Chen, Weiyi; (2017). DeepFlow: Deep learning-based malware detection by mining Android application for abnormal usage of sensitive data. 2017 IEEE symposium on computers and communications (ISCC), 438-443. IEEE. |
Østbye, Morten Oscar; (2017). Multinomial malware classification based on call graphs. . NTNU. |
ŠRUBAŘ, PRÁCE Bc MICHAL; RYŠAVÝ, Doc Ing ONDŘEJ; (2017). ANALÝZA SÍŤOVÉ KOMUNIKACE RANSOMWARE. |
Бабенко, ЛК; Кириллов, АС; (2017). ОБНАРУЖЕНИЕ ВРЕДОНОСНОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ НА ОСНОВЕ РАЗЛИЧНЫХ СПОСОБОВ КОМПОНОВКИ ИСПОЛНИМЫХ ФАЙЛОВ. Фундаментальные исследования(11-2), 267-271. Общество с ограниченной ответственностью" Издательский Дом" Академия …. |
严迎建; 许纪钧; 于敬超; (2017). 基于电流补偿电路的密码芯片抗功耗攻击设计. 计算机应用与软件, 34(1), 311-315 |
何文才; 闫翔宇; 刘培鹤; 刘畅; (2017). 基于最小距离分类器的 Android 恶意软件检测方案. 计算机应用研究, 34(7), 2184-2188 |
刘东升; (2017). Android 恶意应用静态检测模型的设计与实现. . 西安电子科技大学. |
刘新宇; 翁健; 张悦; 冯丙文; 翁嘉思; (2017). 基于 APK 签名信息反馈的 Android 恶意应用检测. 通信学报, 38(5), 190-198 |
吉村豪康; 橋本正樹; 辻秀典; 田中英彦; (2017). マルウェアの実行状況に基づく検知手法. 第 79 回全国大会講演論文集, 2017(1), 541-542 |
孙博文; 黄炎裔; 温俏琨; 田斌; 吴鹏; 李祺; (2017). 基于静态多特征融合的恶意软件分类方法. 网络与信息安全学报, 3(11), 68-76 |
孙磊; 韩静丹; (2017). 基于 BHNB 的细粒度的 Android 恶意应用检测模型. 计算机应用与软件, 34(10), 310-315 |
张晓霞; 吕云虹; (2017). 一种求解混合零空闲置换流水车间调度禁忌分布估计算法. 计算机应用与软件, 34(1), 270-274 |
张骁敏; 刘静; 庄俊玺; 赖英旭; (2017). 基于权限与行为的 Android 恶意软件检测研究. 网络与信息安全学报, 3(3), 51-57 |
戴震; (2017). 面向命令与控制信道的 APT 攻击测试平台设计和实现. . 东南大学. |
李海宾; (2017). 基于机器学习的 Android 恶意软件静态检测技术研究. . 天津大学. |
杜学凯; 吴承荣; 严明; (2017). IPv6 环境下的 IPSEC 通信安全审计机制研究. 计算机应用与软件, 34(1), 298-305 |
沈科; 叶晓俊; 刘孝男; 李斌; (2017). 基于 API 调用分析的 Android 应用行为意图推测. . 清华大学学报 (自然科学版). |
王子夏; (2017). 應用頻譜分析與群體結構辨識於網路攻擊偵防之研究. 成功大學電腦與通信工程研究所學位論文(2017 年), 1-128. 成功大學. |
王聪; 张仁斌; 李钢; (2017). 基于关联特征的贝叶斯 Android 恶意程序检测技术. 计算机应用与软件, 34(1), 286-292 |
田村壮世; 橋本正樹; (2017). CNN を用いた PE 内関数の類似性によるマルウェア検知手法. 研究報告コンピュータセキュリティ (CSEC), 2017(8), 1-6 |
畑田充弘; 森達哉; (2017). DNS クエリ分析に基づく Android PUA の識別と亜種分類. コンピュータセキュリティシンポジウム 2017 論文集, 2017(2) |
程运安; 汪奕祥; (2017). 基于权限统计的 Android 恶意应用检测算法. 计算机应用与软件, 34(1), 306-310,320 |
缪小川; 汪睿; 许蕾; 张卫丰; 徐宝文; (2017). 使用敏感路径识别方法分析安卓应用安全性. 软件学报, 28(9), 2248-2263 |
郝启臣; (2017). 面向 Docker 容器异常检测系统的设计与实现. . 北京邮电大学. |
馮志峰; (2017). 基於機器學習 &Android Dynamic Framework 的惡意軟體檢測和攔截. 臺灣大學資訊工程學研究所學位論文, 1-37. 臺灣大學. |
• 2016 • |
Afonso, Vitor Monte; (2016). Improving Android security with malware detection and automatic security policy generation= Aprimorando a segurança do Android através de detecção de malware e geração automática de políticas. . [sn]. |
Allen, Joe Larry; (2016). pDroid. |
Awan, Saba; Saqib, Nazar Abbas; (2016). Detection of malicious executables using static and dynamic features of portable executable (pe) file. International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage, 48-58. Springer, Cham. |
Banin, Sergii; Shalaginov, Andrii; Franke, Katrin; (2016). Memory access patterns for malware detection. . NISK. |
Baset, Mohamad; (2016). Machine Learning for Malware Detection. . MSc. Dissertation, School of Mathematical and Computer Sciences, Heriot-Watt …. |
Bedford, Andrew; Garvin, Sébastien; Desharnais, Josée; Tawbi, Nadia; Ajakan, Hana; Audet, Frédéric; Lebel, Bernard; (2016). Andrana: Quick and accurate malware detection for android. International Symposium on Foundations and Practice of Security, 20-35. Springer, Cham. |
Bhattacharya, Sukriti; Menéndez, Héctor D; Barr, Earl; Clark, David; (2016). Itect: Scalable information theoretic similarity for malware detection. arXiv preprint arXiv:1609.02404 |
Carlin, Domhnall; O’Kane, P; Sezer, S; (2016). Cloud Malware. |
Ceron, Joao Marcelo; Margi, Cíntia Borges; Granville, Lisandro Zambenedetti; (2016). MARS: An SDN-based malware analysis solution. 2016 IEEE Symposium on Computers and Communication (ISCC), 525-530. IEEE. |
Cho, Hyeisun; Lee, Seulgi; Kim, Byungik; Lee, Taejin; (2016). The data indexing for cyber threat resources. 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), 1059-1061. IEEE. |
Cho, Taejoo; Kim, Hyunki; Lee, Junghwan; Jung, Moongyu; Yi, Jeong Hyun; (2016). A Scheme for Identifying Malicious Applications Based on API Characteristics. Journal of the Korea Institute of Information Security & Cryptology, 26(1), 187-196. Korea Institute of Information Security and Cryptology. |
Cybenko, George; Stocco, Gabriel; Sweeney, Patrick; (2016). Quantifying Covertness in Deceptive Cyber Operations. Cyber Deception, 51-67. Springer, Cham. |
Dara, Sashank; Muralidhara, VN; (2016). Privacy preserving architectures for collaborative intrusion detection. arXiv preprint arXiv:1602.02452 |
Das, Sanjeev Kumar; (2016). Hardware-assisted online defense against malware and exploits. |
DeLoach, Jordan; Caragea, Doina; Ou, Xinming; (2016). Android malware detection with weak ground truth data. 2016 IEEE International Conference on Big Data (Big Data), 3457-3464. IEEE. |
Deepta, KP; Salim, A; (2016). Detecting malwares using dynamic call graphs and opcode patterns. International Conference on Advances in Computing and Data Sciences, 91-101. Springer, Singapore. |
Dimotikalis, Panagiotis; (2016). Memory Forensics and Bitcoin mining malware. |
Enfinger, Kerry Wayne; (2016). Relationship between Effective Application of Machine Learning and Malware Detection: A Quantitative Study. . Northcentral University. |
Fan, Ming; Liu, Jun; Luo, Xiapu; Chen, Kai; Chen, Tianyi; Tian, Zhenzhou; Zhang, Xiaodong; Zheng, Qinghua; Liu, Ting; (2016). Frequent subgraph based familial classification of android malware. 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), 24-35. IEEE. |
Faruki, Parvez; Bhandari, Shweta; Laxmi, Vijay; Gaur, Manoj; Conti, Mauro; (2016). Droidanalyst: Synergic app framework for static and dynamic app analysis. Recent Advances in Computational Intelligence in Defense and Security, 519-552. Springer. |
Faruki, Parvez; Zemmari, Akka; Gaur, Manoj Singh; Laxmi, Vijay; Conti, Mauro; (2016). MimeoDroid: large scale dynamic app analysis on cloned devices via machine learning classifiers. 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W), 60-65. IEEE. |
Feng, Pengbin; Sun, Cong; Ma, Jianfeng; (2016). Measuring the risk value of sensitive dataflow path in Android applications. Security and Communication Networks, 9(18), 5918-5933. John Wiley & Sons, Ltd Chichester, UK. |
Fowler, James E; (2016). Delta Encoding of Virtual-Machine Memory in the Dynamic Analysis of Malware. 2016 Data Compression Conference (DCC), 592-592. IEEE. |
Fraley, James B; Figueroa, Marco; (2016). Polymorphic malware detection using topological feature extraction with data mining. SoutheastCon 2016, 1-7. IEEE. |
Fu, Jianming; Li, Pengwei; Lin, Yan; Ding, Shuang; (2016). Android App Malicious Behavior Detection Based on User Intention. 2016 IEEE Trustcom/BigDataSE/ISPA, 560-567. IEEE. |
Gandotra, Ekta; Bansal, Divya; Sofat, Sanjeev; (2016). Zero-day malware detection. 2016 sixth international symposium on embedded computing and system design (ISED), 171-175. IEEE. |
Goyal, Rohit; Spognardi, Angelo; Dragoni, Nicola; Argyriou, Marios; (2016). SafeDroid: a distributed malware detection service for android. 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA), 59-66. IEEE. |
Han, Jinjing; Feng, Zhiyong; Chen, Shizhan; Huang, Keman; (2016). A Framework for Permission Recommendation and Risk Evaluation Based on Skewness-Based Filtering. 2016 IEEE International Conference on Services Computing (SCC), 774-777. IEEE. |
Hansen, Steven Strandlund; Larsen, Thor Mark Tampus; Stevanovic, Matija; Pedersen, Jens Myrup; (2016). An approach for detection and family classification of malware based on behavioral analysis. 2016 International conference on computing, networking and communications (ICNC), 1-5. IEEE. |
Huang, Keman; Han, Jinjing; Chen, Shizhan; Feng, Zhiyong; (2016). A skewness-based framework for mobile app permission recommendation and risk evaluation. International Conference on Service-Oriented Computing, 252-266. Springer, Cham. |
Huynh, Ngoc Anh; Ng, Wee Keong; Do, Hoang Giang; (2016). On periodic behavior of malware: experiments, opportunities and challenges. 2016 11th International Conference on Malicious and Unwanted Software (MALWARE), 1-8. IEEE. |
Jang, Jae-wook; Yun, Jaesung; Mohaisen, Aziz; Woo, Jiyoung; Kim, Huy Kang; (2016). Detecting and classifying method based on similarity matching of Android malware behavior with profile. SpringerPlus, 5(1), 273. Springer International Publishing. |
Jang, Jae-wook; Yun, Jaesung; Mohaisen, Aziz; Woo, Jiyoung; Kim, Huy Kang; (2016). Andro-profiler: Detecting and Classifying Android Malware based on Behavioral Profiles. arXiv preprint arXiv:1606.01403 |
Jazi, Hossein Hadian; Ghorbani, Ali A; (2016). Dynamic graph-based malware classifier. 2016 14th Annual Conference on Privacy, Security and Trust (PST), 112-120. IEEE. |
Kazdagli, Mikhail; Huang, Ling; Reddi, Vijay; Tiwari, Mohit; (2016). EMMA: A new platform to evaluate hardware-based mobile malware analyses. arXiv preprint arXiv:1603.03086 |
Kazdagli, Mikhail; Reddi, Vijay Janapa; Tiwari, Mohit; (2016). Quantifying and improving the efficiency of hardware-based mobile malware detectors. 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 1-13. IEEE. |
Kolosnjaji, Bojan; Zarras, Apostolis; Lengyel, Tamas; Webster, George; Eckert, Claudia; (2016). Adaptive semantics-aware malware classification. International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 419-439. Springer, Cham. |
Kolosnjaji, Bojan; Zarras, Apostolis; Webster, George; Eckert, Claudia; (2016). Deep learning for classification of malware system call sequences. Australasian Joint Conference on Artificial Intelligence, 137-149. Springer, Cham. |
Korczynski, David; (2016). RePEconstruct: reconstructing binaries with self-modifying code and import address table destruction. 2016 11th International Conference on Malicious and Unwanted Software (MALWARE), 1-8. IEEE. |
Kumara, MA Ajay; Jaidhar, CD; (2016). VMI based automated real-time malware detector for virtualized cloud environment. International Conference on Security, Privacy, and Applied Cryptography Engineering, 281-300. Springer, Cham. |
Leite, Lindeberg Pessoa; (2016). Agrupamento de malware por comportamento de execução usando lógica fuzzy. |
Lightweight, Obfuscation-Resilient Detection; (2016). Institute for Software Research. |
Lim, Jongsu; Yi, Jeong Hyun; (2016). Structural analysis of packing schemes for extracting hidden codes in mobile malware. EURASIP Journal on Wireless Communications and Networking, 2016(1), 221. Springer International Publishing. |
Mangialardo, Reinaldo José; Duarte, Julio Cesar; (2016). Construindo uma base para experimentação de malwares utilizando as análises estática e dinâmica. |
Mariconti, Enrico; Onaolapo, Jeremiah; Ross, Gordon; Stringhini, Gianluca; (2016). What's your major threat? On the differences between the network behavior of targeted and commodity malware. 2016 11th International Conference on Availability, Reliability and Security (ARES), 599-608. IEEE. |
Mariconti, Enrico; Onwuzurike, Lucky; Andriotis, Panagiotis; De Cristofaro, Emiliano; Ross, Gordon; Stringhini, Gianluca; (2016). Mamadroid: Detecting android malware by building markov chains of behavioral models. arXiv preprint arXiv:1612.04433 |
Marques, João Miguel Campos Lacerda; (2016). Controlo e Ocultação de dados pessoais em dispositivos móveis. |
Martin, William; Sarro, Federica; Jia, Yue; Zhang, Yuanyuan; Harman, Mark; (2016). A survey of app store analysis for software engineering. IEEE transactions on software engineering, 43(9), 817-847. IEEE. |
Martín, Alejandro; Menéndez, Héctor D; Camacho, David; (2016). String-based malware detection for android environments. International Symposium on Intelligent and Distributed Computing, 99-108. Springer, Cham. |
Meng, Guozhu; Xue, Yinxing; Mahinthan, Chandramohan; Narayanan, Annamalai; Liu, Yang; Zhang, Jie; Chen, Tieming; (2016). Mystique: Evolving android malware for auditing anti-malware tools. Proceedings of the 11th ACM on Asia conference on computer and communications security, 365-376 |
Mohsen, Fadi; Shehab, Mohamed; (2016). The listening patterns to system events by benign and malicious android apps. 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC), 546-553. IEEE. |
Mosli, Rayan; Li, Rui; Yuan, Bo; Pan, Yin; (2016). Automated malware detection using artifacts in forensic memory images. 2016 IEEE Symposium on Technologies for Homeland Security (HST), 1-6. IEEE. |
NAJAFABADI, SEYED ABDOLRAHMAN MOUSAVIAN; (2016). DESIGN OF CLOUD-ENABLED CROSS-PLATFORM MALWARE ANALYSIS SYSTEMS. |
Narayanan, Annamalai; Chandramohan, Mahinthan; Chen, Lihui; Liu, Yang; Saminathan, Santhoshkumar; (2016). subgraph2vec: Learning distributed representations of rooted sub-graphs from large graphs. arXiv preprint arXiv:1606.08928 |
Narayanan, Annamalai; Meng, Guozhu; Yang, Liu; Liu, Jinliang; Chen, Lihui; (2016). Contextual Weisfeiler-Lehman graph kernel for malware detection. 2016 International Joint Conference on Neural Networks (IJCNN), 4701-4708. IEEE. |
Nataraj, Lakshmanan; Manjunath, BS; (2016). SPAM: Signal processing to analyze malware [applications corner]. IEEE Signal Processing Magazine, 33(2), 105-117. IEEE. |
Pagani, Fabio; De Astis, Matteo; Graziano, Mariano; Lanzi, Andrea; Balzarotti, Davide; (2016). Measuring the role of greylisting and nolisting in fighting spam. 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 562-571. IEEE. |
Palisse, Aurélien; Le Bouder, Hélène; Lanet, Jean-Louis; Le Guernic, Colas; Legay, Axel; (2016). Ransomware and the legacy crypto API. International Conference on Risks and Security of Internet and Systems, 11-28. Springer, Cham. |
Pektaş, Abdurrahman; Çavdar, Mahmut; Acarman, Tankut; (2016). Android malware classification by applying online machine learning. International Symposium on Computer and Information Sciences, 72-80. Springer, Cham. |
Ping, Matthew; Alsulami, Bander; Mancoridis, Spiros; (2016). On the effectiveness of application characteristics in the automatic classification of malware on smartphones. 2016 11th International Conference on Malicious and Unwanted Software (MALWARE), 1-8. IEEE. |
Pirscoveanu, Radu-Stefan; Stevanovic, Matija; Pedersen, Jens Myrup; (2016). Clustering analysis of malware behavior using self organizing map. 2016 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (CyberSA), 1-6. IEEE. |
Priisalu, Jaan; (2016). DETECTION OF RANSOMWARE ON WINDOWS OPERATING SYSTEMS. |
Rowe, Neil C; (2016). Identifying forensically uninteresting files in a large corpus.. EAI Endorsed Trans. Security Safety, 3(7), e2 |
Sadeghi, Alireza; Bagheri, Hamid; Garcia, Joshua; Malek, Sam; (2016). A taxonomy and qualitative comparison of program analysis techniques for security assessment of android software. IEEE Transactions on Software Engineering, 43(6), 492-530. IEEE. |
Sadeghi, Alireza; Bagheri, Hamid; Garcia, Joshua; Malek, Sam; (2016). Institute for Software Research. |
Samantray, O; Tripathy, S Narayan; Das, S Kumar; Panda, Binayak; (2016). CAM: A Combined Analytical Model for Efficient Malware Classification. International Journal of Advanced Research in Computer and Communication Engineering, 5(1) |
Saracino, Andrea; Sgandurra, Daniele; Dini, Gianluca; Martinelli, Fabio; (2016). Madam: Effective and efficient behavior-based android malware detection and prevention. IEEE Transactions on Dependable and Secure Computing, 15(1), 83-97. IEEE. |
Sebastián, Marcos; Rivera, Richard; Kotzias, Platon; Caballero, Juan; (2016). Avclass: A tool for massive malware labeling. International Symposium on Research in Attacks, Intrusions, and Defenses, 230-253. Springer, Cham. |
Sgandurra, Daniele; Muñoz-González, Luis; Mohsen, Rabih; Lupu, Emil C; (2016). Automated dynamic analysis of ransomware: Benefits, limitations and use for detection. arXiv preprint arXiv:1609.03020 |
Shalaginov, Andrii; Franke, Katrin; (2016). Automated intelligent multinomial classification of malware species using dynamic behavioural analysis. 2016 14th annual conference on privacy, security and trust (PST), 70-77. IEEE. |
Shalaginov, Andrii; Grini, Lars Strande; Franke, Katrin; (2016). Understanding neuro-fuzzy on a class of multinomial malware detection problems. 2016 International Joint Conference on Neural Networks (IJCNN), 684-691. IEEE. |
Sinha, Lovely; Bhandari, Shweta; Faruki, Parvez; Gaur, Manoj Singh; Laxmi, Vijay; Conti, Mauro; (2016). Flowmine: Android app analysis via data flow. 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), 435-441. IEEE. |
Su, Dan; Wang, Wei; Wang, Xing; Liu, Jiqiang; (2016). Anomadroid: Profiling android applications' behaviors for identifying unknown malapps. 2016 IEEE Trustcom/BigDataSE/ISPA, 691-698. IEEE. |
Susanto, Andre; Munawar, Ahmad ZA; (2016). AHMDS: Advanced Hybrid Malware Detector System. 2016 International Conference on Data and Software Engineering (ICoDSE), 1-6. IEEE. |
Suárez-Tangil, Guillermo; Tapiador, D Juan E; Peris-Lopez, D Pedro; (2016). Mining structural and behavioral patterns in Smart Malware. . Funcas. |
Tan, Joash WJ; Yap, Roland HC; (2016). Detecting malware through anti-analysis signals-a preliminary study. International Conference on Cryptology and Network Security, 542-551. Springer. |
Tian, Ke; Yao, Danfeng; Ryder, Barbara G; Tan, Gang; (2016). Analysis of code heterogeneity for high-precision classification of repackaged malware. 2016 IEEE Security and Privacy Workshops (SPW), 262-271. IEEE. |
Truong, Dinh-Tu; Cheng, Guang; Jakalan, Ahmad; Guo, Xiao-Jun; Zhou, Ai-Ping; (2016). Detecting DGA-based botnet with DNS traffic analysis in monitored network. 網際網路技術學刊, 17(2), 217-230. 台灣軟體模擬學會 & Ainosco Press. |
Truong, Dinh‐Tu; Cheng, Guang; (2016). Detecting domain‐flux botnet based on DNS traffic features in managed network. Security and Communication Networks, 9(14), 2338-2347 |
Tännler, Luca; Vetsch, Mathias; (2016). Forensic Triage Kit. . HSR Hochschule für Technik Rapperswil. |
Villanova-Pascual, Oscar; (2016). Malware en Android y medidas de prevención. |
Wang, Guojun; Ray, Indrakshi; Calero, Jose M Alcaraz; Thampi, Sabu M; (2016). Security, Privacy and Anonymity in Computation, Communication and Storage: SpaCCS 2016 International Workshops, TrustData, TSP, NOPE, DependSys, BigDataSPT, and WCSSC, Zhangjiajie, China, November 16-18, 2016, Proceedings. . Springer. |
Watkins, LA; Hurley, JS; Xie, S; Yang, T; (2016). Enhancing Cybersecurity by Defeating the Attack Lifecycle: Using Mobile Device Resource Usage Patterns to Detect Unauthentic Mobile Applications. Journal of Information Warfare, 15(3), 35-45. JSTOR. |
Webster, George D; Hanif, Zachary D; Ludwig, Andre LP; Lengyel, Tamas K; Zarras, Apostolis; Eckert, Claudia; (2016). SKALD: a scalable architecture for feature extraction, multi-user analysis, and real-time information sharing. International Conference on Information Security, 231-249. Springer. |
Wu, Songyang; Wang, Pan; Li, Xun; Zhang, Yong; (2016). Effective detection of android malware based on the usage of data flow APIs and machine learning. Information and software technology, 75, 17-25. Elsevier. |
Xu, Lifan; (2016). Android malware classification using parallelized machine learning methods. . University of Delaware. |
Xu, Lifan; Zhang, Dongping; Alvarez, Marco A; Morales, Jose Andre; Ma, Xudong; Cavazos, John; (2016). Dynamic android malware classification using graph-based representations. 2016 IEEE 3rd international conference on cyber security and cloud computing (CSCloud), 220-231. IEEE. |
Xu, Lifan; Zhang, Dongping; Jayasena, Nuwan; Cavazos, John; (2016). Hadm: Hybrid analysis for detection of malware. Proceedings of SAI Intelligent Systems Conference, 702-724. Springer, Cham. |
Yadegari, Babak; (2016). Automatic deobfuscation and reverse engineering of obfuscated code. . The University of Arizona.. |
Yao, Danfeng; Ryder, Barbara; (2016). Detection Of Malware Collusion With Static Dependence Analysis On Inter-App Communication. . Virginia Polytechnic Institute and State University Blacksburg United States. |
پارسا سعيد; گوران اوريمي امير; (2016). يک چارچوب بهينه و شفاف براي تحليل خودکار بدافزار. . علوم و فناوري پدافند نوين (علوم و فناوري هاي پدافند غير عامل). |
پارسا; سیفی; علائیان; محمد هادی; (2016). ارائه یک رهیافت جدید مبتنی بر گراف وابستگی بین فراخوانی های سیستمی برای استخراج الگوهای رفتاری مخرب. پدافند الکترونیکی و سایبری, 4(3), 47-60. دانشگاه امام حسین. |
三村聡志; 佐々木良一; (2016). プロセス情報と関連づけた通信情報保全手法の提案. 情報処理学会論文誌, 57(9), 1944-1953 |
吉村豪康; 橋本正樹; 辻秀典; 田中英彦; (2016). TOMOYO Linux を用いた Linux マルウェアの動的解析環境構築に向けた初期的検討. コンピュータセキュリティシンポジウム 2016 論文集, 2016(2), 518-525 |
孙润康; 彭国军; 李晶雯; 沈诗琦; (2016). 基于行为的 Android 恶意软件判定方法及其有效性. 计算机应用, 36(4), 973-978 |
曲长波; 李栋栋; (2016). 基于视觉密码和边缘检测的零水印算法. 计算机应用与软件, 33(9), 328-333 |
水野翔; 畑田充弘; 森達哉; 後藤滋樹; (2016). HTTP ヘッダフィールドの可変性に基づくマルウェア感染端末の特定. コンピュータセキュリティシンポジウム 2016 論文集, 2016(2), 632-639 |
谢国波; 苏本卉; (2016). 一种新的基于混沌的彩色图像加密算法. 计算机应用与软件, 33(9), 324-327 |
黄梅根; 曾云科; (2016). 基于权限组合的 Android 窃取隐私恶意应用检测方法. 计算机应用与软件, 33(9), 320-323,333 |
조태주; 김현기; 이정환; 정문규; 이정현; (2016). API 특성 정보기반 악성 애플리케이션 식별 기법. 정보보호학회논문지, 26(1), 187-196 |
• 2015 • |
Afonso, Vitor Monte; de Amorim, Matheus Favero; Grégio, André Ricardo Abed; Junquera, Glauco Barroso; de Geus, Paulo Lício; (2015). Identifying Android malware using dynamically obtained features. Journal of Computer Virology and Hacking Techniques, 11(1), 9-17. Springer Paris. |
Afonso, Vitor Monte; de Amorim, Matheus Favero; Ricardo, André; Grégio, Abed; Junquera, Glauco Barroso; de Geus, Paulo Lıcio; (2015). Identifying Android malware using dynamically obtained features. Journal of Computer Virology and Hacking Techniques, 11(1), 9-17 |
Alaeiyan, Mohammad Hadi; Parsa, Saeed; (2015). Automatic loop detection in the sequence of system calls. 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), 720-723. IEEE. |
Avdiienko, Vitalii; Kuznetsov, Konstantin; Gorla, Alessandra; Zeller, Andreas; Arzt, Steven; Rasthofer, Siegfried; Bodden, Eric; (2015). Mining apps for abnormal usage of sensitive data. 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, 1, 426-436. IEEE. |
Bekerman, Dmitri; Shapira, Bracha; Rokach, Lior; Bar, Ariel; (2015). Unknown malware detection using network traffic classification. 2015 IEEE Conference on Communications and Network Security (CNS), 134-142. IEEE. |
Bhandari, Shweta; Gupta, Rishabh; Laxmi, Vijay; Gaur, Manoj Singh; Zemmari, Akka; Anikeev, Maxim; (2015). DRACO: DRoid analyst combo an android malware analysis framework. Proceedings of the 8th International Conference on Security of Information and Networks, 283-289 |
Chan, Kai-Wei; (2015). 基於對話期之非監督式點對點殭屍網路偵測之研究. 成功大學電腦與通信工程研究所學位論文, 1-40. 成功大學. |
Das, Sanjeev; Liu, Yang; Zhang, Wei; Chandramohan, Mahintham; (2015). Semantics-based online malware detection: Towards efficient real-time protection against malware. IEEE transactions on information forensics and security, 11(2), 289-302. IEEE. |
Elish, Karim O; Shu, Xiaokui; Yao, Danfeng Daphne; Ryder, Barbara G; Jiang, Xuxian; (2015). Profiling user-trigger dependence for Android malware detection. Computers & Security, 49, 255-273. Elsevier Advanced Technology. |
Filiol, Eric; (2015). ESIEA-Laboratoire de virologie et de cryptologie opérationnelles France {filiol, irolla}@ esiea. fr March 26, 2015. |
Filiol, Eric; Irolla, Paul; (2015). ESIEA Operational Cryptology and Virology Lab. |
Garcia, Joshua; Hammad, Mahmoud; Pedrood, Bahman; Bagheri-Khaligh, Ali; Malek, Sam; (2015). Obfuscation-resilient, efficient, and accurate detection and family identification of android malware. Department of Computer Science, George Mason University, Tech. Rep, 202 |
Gheorghe, Laura; Marin, Bogdan; Gibson, Gary; Mogosanu, Lucian; Deaconescu, Razvan; Voiculescu, Valentin‐Gabriel; Carabas, Mihai; (2015). Smart malware detection on Android. Security and Communication Networks, 8(18), 4254-4272 |
Glendowne, Dae; (2015). Automating malware detection in Windows memory images using machine learning. . Mississippi State University. |
Glendowne, Dae; Miller, Cody; McGrew, Wesley; Dampier, David; (2015). Characteristics of Malicious DLLs in Windows Memory. Ifip international conference on digital forensics, 149-161. Springer, Cham. |
Haffejee, Jameel; (2015). An analysis of malware evasion techniques against modern AV engines. |
Heras Cáceres, Inés; Sierra Liras, Diego; (2015). Sistema de detección de malware en Android. |
Hernandez, Javier; Li, Yin; Rehg, James M; Picard, Rosalind W; (2015). Cardiac and respiratory parameter estimation using head-mounted motion-sensitive sensors. EAI Endorsed Transactions on Pervasive Health and Technology, 1(1). European Alliance for Innovation (EAI). |
Hägle, Jakob; (2015). Utvärdering av metod för applikationsgranskning. |
Interrante-Grant, Alexander M; Kaeli, David; (2015). Gaussian Mixture Models for Dynamic Malware Clustering. |
Jang, Jae-wook; Kang, Hyunjae; Woo, Jiyoung; Mohaisen, Aziz; Kim, Huy Kang; (2015). Andro-AutoPsy: anti-malware system based on similarity matching of malware and malware creator-centric information. Digital Investigation, 14, 17-35. Elsevier. |
Jang, Jae-wook; Woo, Jiyoung; Mohaisen, Aziz; Yun, Jaesung; Kim, Huy Kang; (2015). Mal-netminer: Malware classification approach based on social network analysis of system call graph. Mathematical Problems in Engineering, 2015. Hindawi. |
Kang, Hyunjae; Jang, Jae-wook; Mohaisen, Aziz; Kim, Huy Kang; (2015). Detecting and classifying android malware using static analysis along with creator information. International Journal of Distributed Sensor Networks, 11(6), 479174. SAGE Publications Sage UK: London, England. |
Kim, Junhyoung; Kim, Tae Guen; Im, Eul Gyu; (2015). Structural information based malicious app similarity calculation and clustering. Proceedings of the 2015 Conference on research in adaptive and convergent systems, 314-318 |
Kotzias, Platon; Matic, Srdjan; Rivera, Richard; Caballero, Juan; (2015). Certified PUP: abuse in authenticode code signing. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 465-478 |
Kuo, Cheng-Chung; Hsu, Kai-Chun; Yang, Chu-Sing; (2015). A novel way to generate the rule patterns for detecting malicious PDF documents. Proceedings of the Asia-Pacific Advanced Network, 40, 43-49 |
Li, Yongfeng; Shen, Tong; Sun, Xin; Pan, Xuerui; Mao, Bing; (2015). Detection, classification and characterization of android malware using api data dependency. International Conference on Security and Privacy in Communication Systems, 23-40. Springer, Cham. |
Li, Yuping; Sundaramurthy, Sathya Chandran; Bardas, Alexandru G; Ou, Xinming; Caragea, Doina; Hu, Xin; Jang, Jiyong; (2015). Experimental study of fuzzy hashing in malware clustering analysis. 8th Workshop on Cyber Security Experimentation and Test ({CSET} 15) |
Mangialardo, Reinaldo Jose; Duarte, Julio Cesar; (2015). Integrating static and dynamic malware analysis using machine learning. IEEE Latin America Transactions, 13(9), 3080-3087. IEEE. |
Marengereke, Tendai Munyaradzi; Sornalakshmi, K; (2015). Automated Malicious Android App Detection using Machine Learning Methods. |
Nataraj, Lakshmanan; (2015). A signal processing approach to malware analysis. . University of California, Santa Barbara. |
Naval, Smita; Laxmi, Vijay; Rajarajan, Muttukrishnan; Gaur, Manoj Singh; Conti, Mauro; (2015). Employing program semantics for malware detection. IEEE Transactions on Information Forensics and Security, 10(12), 2591-2604. IEEE. |
Nguyen, Nhu Tuan; Le, Ba Cuong; Le, Duc Thuan; Van Le, Thi Hong; (2015). A New Method of Virus Detection Based on Maximum Entropy Model. Advanced Computational Methods for Knowledge Engineering, 151-161. Springer, Cham. |
Pektaş, Abdurrahman; (2015). Behavior based malware classification using online machine learning. . Grenoble Alpes. |
Pektaş, Abdurrahman; (2015). Classification des logiciels malveillants basée sur le comportement à l'aide de l'apprentissage automatique en ligne. |
Pektaş, Abdurrahman; Acarman, Tankut; Falcone, Yliès; Fernandez, Jean-Claude; (2015). Runtime-behavior based malware classification using online machine learning. 2015 World Congress on Internet Security (WorldCIS), 166-171. IEEE. |
Pinto, Allan; Carvalho, Ariadne; Petry, Carlos A; Constantino, Edelson H; Moreira, Eliana; Rodrigues, Elisa; Silva, Ewerton; Martins, Ewerton; Gonçalves, Fabrício M; Pantoja, Fagner L; (2015). Anais do X Workshop de Teses, Dissertações e Trabalhos de Iniciação Científica em Andamento do IC-Unicamp. |
Pirscoveanu, Radu S; Hansen, Steven S; Larsen, Thor MT; Stevanovic, Matija; Pedersen, Jens Myrup; Czech, Alexandre; (2015). Analysis of malware behavior: Type classification using machine learning. 2015 International conference on cyber situational awareness, data analytics and assessment (CyberSA), 1-7. IEEE. |
Rasthofer, Siegfried; Arzt, Steven; Kolhagen, Max; Pfretzschner, Brian; Huber, Stephan; Bodden, Eric; Richter, Philipp; (2015). Droidsearch: A tool for scaling android app triage to real-world app stores. 2015 Science and Information Conference (SAI), 247-256. IEEE. |
Rasthofer, Siegfried; Arzt, Steven; Miltenberger, Marc; Bodden, Eric; (2015). Harvesting runtime data in android applications for identifying malware and enhancing code analysis. Technische Universität Darmstadt2015 |
Rinaldi, Aditia; (2015). Implementasi fuzzy hashing untuk meningkatkan jumlah deteksi malware dengan metode signature based detection. . Universitas Multimedia Nusantara. |
Rowe, Neil C; (2015). Finding contextual clues to malware using a large corpus. 2015 IEEE Symposium on Computers and Communication (ISCC), 229-236. IEEE. |
Roy, Sankardas; DeLoach, Jordan; Li, Yuping; Herndon, Nic; Caragea, Doina; Ou, Xinming; Ranganath, Venkatesh Prasad; Li, Hongmin; Guevara, Nicolais; (2015). Experimental study with real-world data for android app security analysis using machine learning. Proceedings of the 31st Annual Computer Security Applications Conference, 81-90 |
Shijo, PV; Salim, A; (2015). Integrated static and dynamic analysis for malware detection. Procedia Computer Science, 46, 804-811. Elsevier. |
Suarez-Tangil, Guillermo; Tapiador, Juan E; Lombardi, Flavio; Di Pietro, Roberto; (2015). ALTERDROID: differential fault analysis of obfuscated smartphone malware. IEEE Transactions on Mobile Computing, 15(4), 789-802. IEEE. |
Suarez-Tangil, Guillermo; Tapiador, Juan E; Peris-Lopez, Pedro; (2015). Compartmentation policies for Android apps: A combinatorial optimization approach. International Conference on Network and System Security, 63-77. Springer. |
Subramaniam, L Venkata; (2015). Advanced Big Data Management and Analytics for Ubiquitous Sensors. |
Svajcer, Vanja; (2015). BUILDING A MALWARE LAB IN THE AGE OF BIG DATA. |
Tu, Truong Dinh; Guang, Cheng; Xin, Liang Yi; (2015). Detecting bot-infected machines based on analyzing the similar periodic DNS queries. 2015 International Conference on Communications, Management and Telecommunications (ComManTel), 35-40. IEEE. |
Yadegari, Babak; Johannesmeyer, Brian; Whitely, Ben; Debray, Saumya; (2015). A generic approach to automatic deobfuscation of executable code. 2015 IEEE Symposium on Security and Privacy, 674-691. IEEE. |
Yang, Wei; Xiao, Xusheng; Andow, Benjamin; Li, Sihan; Xie, Tao; Enck, William; (2015). Appcontext: Differentiating malicious and benign mobile app behaviors using context. 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, 1, 303-313. IEEE. |
Zakeri, Mohaddeseh; Faraji Daneshgar, Fatemeh; Abbaspour, Maghsoud; (2015). A static heuristic approach to detecting malware targets. Security and Communication Networks, 8(17), 3015-3027. Wiley Online Library. |
Zawadka, Cezary Gerard; (2015). Android Malware Detection Based on Cross Application Permission Analysis. . Instytut Informatyki. |
刘涛; 唐祝寿; 沈备军; (2015). Android 应用隐私泄露的自动化检测. 计算机应用与软件, 32(3), 297-301 |
张文梅; (2015). 基于 ZigBee 的家居监控系统设计. 计算机应用与软件, 32(3), 313-316 |
許博學; 陳奎研; (2015). Android 惡意軟體偵查之研究. 全球商業經營管理學報(7), 123-133. 正修科技大學管理學院. |
김준형; 박준규; 임을규; (2015). 메소드 구조적 정보 기반 악성 안드로이드 응용프로그램 유사도 비교 방법. 한국정보과학회 학술발표논문집, 125-127 |
양원우; 김지혜; (2015). Androfilter: 유효마켓데이터를 이용한 안드로이드 악성코드 필터. 정보보호학회논문지, 25(6), 1341-1351 |
조제경; 류재철; (2015). 코드 필터링 기법을 이용한 iOS 환경에서의 패치 분석 방법론. 정보보호학회논문지, 25(5), 1021-1026 |
• 2014 • |
Alzahrani, Abdullah J; Stakhanova, Natalia; Ali, Hugo Gonzalezand; Ghorbani, A; (2014). Characterizing Evaluation Practicesof Intrusion Detection Methodsfor Smartphones. Journal of Cyber Security and Mobility, 3(2), 89-132. River Publishers. |
Arzt, Steven; Rasthofer, Siegfried; Fritz, Christian; Bodden, Eric; Bartel, Alexandre; Klein, Jacques; Le Traon, Yves; Octeau, Damien; McDaniel, Patrick; (2014). Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. Acm Sigplan Notices, 49(6), 259-269. ACM New York, NY, USA. |
Barrera, David Jose; (2014). Securing decentralized software installation and updates. . Carleton University. |
Bartl, V; (2014). A client honeypot. MASARYKOVA UNIVERSITY,[Online]. Available: https://is. muni. cz/th/dtmhv/thesis. pdf.[Accessed 6 Mar 2019] |
Berger-Sabbatel, Gilles; Duda, Andrzej; (2014). Four Years of Botnet Hunting: An Assessment. International Conference on Multimedia Communications, Services and Security, 29-42. Springer. |
Faruki, Parvez; Bharmal, Ammar; Laxmi, Vijay; Gaur, Manoj Singh; Conti, Mauro; Rajarajan, Muttukrishnan; (2014). Evaluation of android anti-malware techniques against dalvik bytecode obfuscation. 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications, 414-421. IEEE. |
Ghezelbigloo, Zahra; VafaeiJahan, Majid; (2014). Role-opcode vs. opcode: The new method in computer malware detection. 2014 International Congress on Technology, Communication and Knowledge (ICTCK), 1-6. IEEE. |
Gonzalez, Hugo; Stakhanova, Natalia; Ghorbani, Ali A; (2014). Droidkin: Lightweight detection of android apps similarity. International Conference on Security and Privacy in Communication Networks, 436-453. Springer, Cham. |
Hawkins, Byron; (2014). DCFI: Control Flow Integrity for Modern Windows Applications. . UC Irvine. |
Jang, Jae-wook; Woo, Jiyoung; Yun, Jaesung; Kim, Huy Kang; (2014). Mal-netminer: malware classification based on social network analysis of call graph. Proceedings of the 23rd International Conference on World Wide Web, 731-734 |
Jang, Jae-wook; Yun, Jaesung; Woo, Jiyoung; Kim, Huy Kang; (2014). Andro-profiler: anti-malware system based on behavior profiling of mobile malware. Proceedings of the 23rd International Conference on World Wide Web, 737-738 |
Kang, Hyun Jae; Jang, Jae-wook; Mohaisen, Aziz; Kim, Huy Kang; (2014). Androtracker: Creator information based android malware classification system. Information Security Applications-15th International Workshop, WISA, 8909 |
Kazdagli, Mikhail; Huang, Ling; Reddi, Vijay; Tiwari, Mohit; (2014). Morpheus: Benchmarking computational diversity in mobile malware. Proceedings of the Third Workshop on Hardware and Architectural Support for Security and Privacy, 1-8 |
Kumar, Ajit; Aghila, G; (2014). Portable executable scoring: What is your malicious score?. 2014 International Conference on Science Engineering and Management Research (ICSEMR), 1-5. IEEE. |
Lindorfer, Martina; Volanis, Stamatis; Sisto, Alessandro; Neugschwandtner, Matthias; Athanasopoulos, Elias; Maggi, Federico; Platzer, Christian; Zanero, Stefano; Ioannidis, Sotiris; (2014). AndRadar: fast discovery of android applications in alternative markets. International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 51-71. Springer, Cham. |
McGrew, Wesley; (2014). Instrumenting Point-of-Sale Malware. . DEFCON. |
Musavi, Seyyedeh Atefeh; Kharrazi, Mehdi; (2014). Back to static analysis for kernel-level rootkit detection. IEEE Transactions on Information Forensics and Security, 9(9), 1465-1476. IEEE. |
Nappa, Antonio; Xu, Zhaoyan; Rafique, M Zubair; Caballero, Juan; Gu, Guofei; (2014). Cyberprobe: Towards internet-scale active detection of malicious servers. In Proceedings of the 2014 Network and Distributed System Security Symposium (NDSS 2014), 1-15 |
Naval, Smita; (2014). Behavior-Based Dynamic Malware Detection Techniques.... . MNIT Jaipur. |
Neuner, Sebastian; Van der Veen, Victor; Lindorfer, Martina; Huber, Markus; Merzdovnik, Georg; Mulazzani, Martin; Weippl, Edgar; (2014). Enter sandbox: Android sandbox comparison. arXiv preprint arXiv:1410.7749 |
Ng, Deniel V; Hwang, Jen-Ing G; (2014). Android malware detection using the dendritic cell algorithm. 2014 International Conference on Machine Learning and Cybernetics, 1, 257-262. IEEE. |
Nugroho, Heru Ari; Prayudi, Yudi; (2014). Penggunaan Teknik Reverse Engineering Pada Malware Analysis Untuk Identifikasi Serangan Malware. Universitas Islam Indonesia, Yogyakarta |
Rasthofer, Siegfried; Arzt, Steven; Bodden, Eric; (2014). A machine-learning approach for classifying and categorizing android sources and sinks.. NDSS, 14, 1125 |
Severyn, Stacie Noel; (2014). Adapting Linguistic Deception Cues for Malware Detection. |
Shabani, Neda; Jahan, Majid Vafaei; (2014). Metamorphic virus detection based on Bayesian network. 2014 International Congress on Technology, Communication and Knowledge (ICTCK), 1-8. IEEE. |
Sood, Aditya K; Zeadally, Sherali; Enbody, Richard J; (2014). An empirical study of HTTP-based financial botnets. IEEE Transactions on Dependable and Secure Computing, 13(2), 236-251. IEEE. |
Suarez-Tangil, Guillermo; Tapiador, Juan E; Peris-Lopez, Pedro; (2014). Stegomalware: Playing hide and seek with malicious components in smartphone apps. International conference on information security and cryptology, 496-515. Springer, Cham. |
Suárez de Tangil Rotaeche, Guillermo Nicolás; (2014). Mining structural and behavioral patterns in smart malware. |
Wang, Wei; Wang, Xing; Feng, Dawei; Liu, Jiqiang; Han, Zhen; Zhang, Xiangliang; (2014). Exploring permission-induced risk in android applications for malicious application detection. IEEE Transactions on Information Forensics and Security, 9(11), 1869-1882. IEEE. |
Wolfe, Britton; Elish, Karim O; Yao, Danfeng Daphne; (2014). Comprehensive behavior profiling for proactive android malware detection. International Conference on Information Security, 328-344. Springer, Cham. |
Wolfe, Britton; Elish, Karim; Yao, Danfeng; (2014). High precision screening for Android malware with dimensionality reduction. 2014 13th International Conference on Machine Learning and Applications, 21-28. IEEE. |
van Lenthe, JM; (2014). Combining Multiple Malware Detection Approaches for Achieving Higher Accuracy. . University of Twente. |
武田圭史; 露木航平; (2014). 実行ファイルのプロファイリングによる調査対象ファイル特定手法の提案. コンピュータセキュリティシンポジウム 2014 論文集, 2014(2), 519-526 |
赵毅; 龚俭; 杨望; (2014). 恶意代码自动分析系统的研究. Journal on Communications |
윤재성; 장재욱; 김휘강; (2014). 행위기반의 프로파일링 기법을 활용한 모바일 악성코드 분류 기법. 정보보호학회논문지, 24(1), 145-154 |
• 2013 • |
CERTH, Lead Beneficiary; PU, ITI Dissemination Level; (2013). Enhanced Network Security for Seamless Service Provisioning in the Smart Mobile Ecosystem. |
Dolmans, Ralph; Katz, Wouter; (2013). RP1: Carberp Malware analysis. |
Guri, Mordehai; Kedma, Gabi; Sela, Tom; Carmeli, Buky; Rosner, Amit; Elovici, Yuval; (2013). Noninvasive detection of anti-forensic malware. 2013 8th International Conference on Malicious and Unwanted Software:" The Americas"(MALWARE), 1-10. IEEE. |
Hudel, Christopher; Shehab, Mohamed; (2013). Optimizing search for malware by hashing smaller amounts of data. World Congress on Internet Security (WorldCIS-2013), 112-117. IEEE. |
Oktavianto, Digit; Muhardianto, Iqbal; (2013). Cuckoo malware analysis. . Packt Publishing Ltd. |
Pareek, Himanshu; Eswari, PRL; Babu, N Sarat Chandra; (2013). Malicious PDF document detection based on feature extraction and entropy. International Journal Journal of Security, Privacy and Trust Management, 2(5) |
Pareek, Himanshu; Eswari, PRL; Babu, Sarat Chandra; (2013). APPBACS: AN APPLICATION BEHAVIOR ANALYSIS AND CLASSIFICATION SYSTEM. International Journal of Computer Science & Information Technology, 5(2), 53. Academy & Industry Research Collaboration Center (AIRCC). |
• 2012 • |
Kedziora, Michal; Gawin, Paulina; Szczepanik, Michal; Jozwiak, Ireneusz; (2012). Android Malware Detection Using Machine Learning And Reverse Engineering. World Wide Web, 16(1) |